找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Complex Analytic Sets; E. M. Chirka Book 1989 Kluwer Academic Publishers 1989 Complex analysis.Dimension.Divisor.algebraic varieties

[復(fù)制鏈接]
樓主: Combat
11#
發(fā)表于 2025-3-23 10:59:24 | 只看該作者
Fundamentals of the Theory of Analytic Sets, U.: |z.| < r, counted with multiplicities. Then f can, in a certain neighborhood U = U’ × U. ? V of the coordinate origin in ?., be represented in the form . where the functions c.(z’) are holomorphic in U’, while ? is holoniorphic and zero free in U.
12#
發(fā)表于 2025-3-23 16:45:30 | 只看該作者
Tangent Cones and Intersection Theory,ne with vertex 0 since if ν ∈ .(., .), then .ν also belongs to .(., .) for all . ≥ 0. Geometrically the cone .(., .) is the set of limit positions of secants of . passing through .; it is the set of limit points of the family of sets .(. ? .) = {.(. ? .):. ∈ .} as .→∞. If . ? ē then, by definition, the set . (., .) is empty.
13#
發(fā)表于 2025-3-23 21:35:17 | 只看該作者
14#
發(fā)表于 2025-3-23 23:56:24 | 只看該作者
15#
發(fā)表于 2025-3-24 05:25:58 | 只看該作者
Tangent Cones and Intersection Theory,uch that . → . and . (. ? .) → ν as .→ ∞. The set of all such tangent vectors is denoted by .(., .) and is called the . to . at .. This really is a cone with vertex 0 since if ν ∈ .(., .), then .ν also belongs to .(., .) for all . ≥ 0. Geometrically the cone .(., .) is the set of limit positions of
16#
發(fā)表于 2025-3-24 10:33:32 | 只看該作者
17#
發(fā)表于 2025-3-24 13:06:12 | 只看該作者
18#
發(fā)表于 2025-3-24 17:21:30 | 只看該作者
0169-6378 in the purely algebraic language of ideals in commutative algebras..In the present book I have tried to eliminate this noncorrespondence and to give a geometri978-94-010-7565-7978-94-009-2366-9Series ISSN 0169-6378
19#
發(fā)表于 2025-3-24 19:30:25 | 只看該作者
20#
發(fā)表于 2025-3-24 23:40:58 | 只看該作者
Metrical Properties of Analytic Sets,ally define in .Ω the operation of multiplication by a complex number ((. + .). = . +.), and complex conjugation Σ{.(?/?.)+.(?/?.) ? Σ{.(?/?.)?.(?/?.) (in .Ω the operator Σ.(?/?.) ? Σ?.(?/?.) corresponds to it; do not confuse it with the corresponding operation in ?.Ω!). Hermiticity of .(.,.′) means
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 09:11
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
普兰店市| 搜索| 罗城| 鹤庆县| 新源县| 肥东县| 呼图壁县| 沁源县| 抚顺市| 静乐县| 黄龙县| 枝江市| 西华县| 巴彦淖尔市| 汾西县| 错那县| 临沭县| 元氏县| 安陆市| 肃宁县| 惠来县| 海门市| 金堂县| 蚌埠市| 新余市| 寿宁县| 吐鲁番市| 松溪县| 美姑县| 长沙市| 白山市| 定远县| 宣汉县| 台南市| 清丰县| 淳安县| 准格尔旗| 屏山县| 瓮安县| 娄底市| 和田县|