找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Complex Analysis and Special Topics in Harmonic Analysis; Carlos A. Berenstein,Roger Gay Book 1995 Springer-Verlag New York, Inc. 1995 Com

[復(fù)制鏈接]
樓主: Julienne
21#
發(fā)表于 2025-3-25 07:04:39 | 只看該作者
22#
發(fā)表于 2025-3-25 11:17:22 | 只看該作者
Spracherwerb in der Interaktion,he . of . and . the . (Sometimes the . are called the . especially in the Russian literature. In some contexts .= .λ.,λ. ∈? , and the λ. are called the frequencies and τ. = 2./λ.(when λ. ≠ 0) the periods; clearly e. periodic of period τ..) It is immediate that there is a unique analytic functional .
23#
發(fā)表于 2025-3-25 15:22:38 | 只看該作者
24#
發(fā)表于 2025-3-25 16:46:07 | 只看該作者
Sprechwissenschaft & Psycholinguistik 5tar-shaped with respect to the origin, to which . admits an analytic continuation. Let us denote by .(.) that domain. (Why is it well defined?) We shall obtain .(.) as the union of certain domains .(.),such that in each of them we shall be able to describe explicitly the analytic continuation of .,
25#
發(fā)表于 2025-3-25 23:13:31 | 只看該作者
https://doi.org/10.1007/978-3-322-97023-7s ., . ∈ ?, in their study of the vibrating string. It is known that every .-function which is 2π-periodic in the real line has an expansion of the form En . (we remind the reader one can estimate these coefficients . very precisely, and that we do not need to restrict ourselves to .-functions). It
26#
發(fā)表于 2025-3-26 00:49:33 | 只看該作者
https://doi.org/10.1007/978-1-4613-8445-8Complex analysis; calculus; differential equation; functional analysis; harmonic analysis
27#
發(fā)表于 2025-3-26 06:51:17 | 只看該作者
28#
發(fā)表于 2025-3-26 11:47:24 | 只看該作者
Boundary Values of Holomorphic Functions and Analytic Functionals,ntwise, almost everywhere, or in some generalized sense, for instance, in the sense of distributions, as in the Edge-of-the-Wedge Theorem (see [BG, Theorem 3.6.23], [Beur]). Let us make these concepts more precise.
29#
發(fā)表于 2025-3-26 15:15:56 | 只看該作者
30#
發(fā)表于 2025-3-26 17:30:07 | 只看該作者
Exponential Polynomials,he . of . and . the . (Sometimes the . are called the . especially in the Russian literature. In some contexts .= .λ.,λ. ∈? , and the λ. are called the frequencies and τ. = 2./λ.(when λ. ≠ 0) the periods; clearly e. periodic of period τ..) It is immediate that there is a unique analytic functional .
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 02:53
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
茌平县| 定南县| 郑州市| 沅陵县| 资中县| 花莲市| 台湾省| 日喀则市| 出国| 神木县| 郸城县| 离岛区| 南充市| 闻喜县| 华宁县| 杨浦区| 镇原县| 宜黄县| 板桥市| 唐河县| 陇川县| 屯留县| 德保县| 哈密市| 贵溪市| 丘北县| 孝义市| 石首市| 永德县| 广南县| 德令哈市| 绥宁县| 安顺市| 扶风县| 永靖县| 阿巴嘎旗| 勐海县| 凤山县| 兴山县| 微山县| 文成县|