找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Complex Analysis and Geometry; International Confer P. Dolbeault,A. Iordan,J.-M. Trépreau Conference proceedings 2000 Springer Basel AG 200

[復(fù)制鏈接]
樓主: Auditory-Nerve
41#
發(fā)表于 2025-3-28 17:30:52 | 只看該作者
42#
發(fā)表于 2025-3-28 20:36:14 | 只看該作者
https://doi.org/10.1007/978-3-662-54639-0General problem: given a surface . in ?. = {(., .)}, . = . + ., . = . + . find a Levi-flat (i.e. foliated by complex curves) hypersurface . such that . = .(.=booumdary of .).
43#
發(fā)表于 2025-3-29 01:01:01 | 只看該作者
,Présence de I’oeuvre de Pierre Lelong dans les grands thèmes de recherches d’aujourd’hui,This talk has been given for the opening of the Conference in honor of Pierre Lelong (Paris, September 1997). We have selected the main topics of P. Lelong’s research which are still up to date and productive.
44#
發(fā)表于 2025-3-29 05:48:32 | 只看該作者
45#
發(fā)表于 2025-3-29 11:12:14 | 只看該作者
Hypoellipticity: Geometrization and speculation,To any finite collection of smooth real vector fields . . in ?. we associate a metric in the phase space T??.. The relation between the asymptotic behavior of this metric and hypoellipticity of., in the smooth, real analytic, and Gevrey categories, is explored.
46#
發(fā)表于 2025-3-29 15:21:15 | 只看該作者
47#
發(fā)表于 2025-3-29 16:51:24 | 只看該作者
Pointwise nonisotropic support functions on convex domains,We construct holomorphic support functions on a smoothly bounded, convex domain of finite type in ?. which satisfy sharp, nonisotropic estimates near the fixed boundary point where the functions vanish.
48#
發(fā)表于 2025-3-29 22:26:26 | 只看該作者
,Boundaries of Levi-flat hypersurfaces of ?2,General problem: given a surface . in ?. = {(., .)}, . = . + ., . = . + . find a Levi-flat (i.e. foliated by complex curves) hypersurface . such that . = .(.=booumdary of .).
49#
發(fā)表于 2025-3-30 03:49:57 | 只看該作者
Progress in Mathematicshttp://image.papertrans.cn/c/image/231375.jpg
50#
發(fā)表于 2025-3-30 06:56:27 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 16:52
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
南安市| 邵武市| 禄劝| 卢氏县| 高要市| 济阳县| 岳普湖县| 读书| 塘沽区| 弥勒县| 谢通门县| 玉林市| 万宁市| 桂林市| 龙岩市| 常山县| 礼泉县| 图片| 廊坊市| 黑龙江省| 嘉峪关市| 伽师县| 潜江市| 东方市| 冷水江市| 绍兴市| 惠安县| 玛曲县| 肇庆市| 邹城市| 沁阳市| 静乐县| 兴安县| 宁晋县| 沾化县| 安丘市| 明水县| 桃源县| 南城县| 上林县| 登封市|