找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Complex Analysis and Geometry; Vincenzo Ancona,Alessandro Silva Book 1993 Springer Science+Business Media New York 1993 Invariant.Manifold

[復(fù)制鏈接]
樓主: children
41#
發(fā)表于 2025-3-28 17:32:12 | 只看該作者
A Problem List on Vector Bundles, volume). Such lists stimulate research, and give more opportunities for researchers to disseminate their results among interested people. Furthermore, such lists can include relevant references, not all of which might be known to a young, isolated researcher.
42#
發(fā)表于 2025-3-28 20:30:52 | 只看該作者
Overview: 978-1-4757-9773-2978-1-4757-9771-8
43#
發(fā)表于 2025-3-29 00:13:38 | 只看該作者
,Wo komme ich her – lokal und kulturell?,e induced map of local rings . . → . . has property P. In this chapter we give a criterion for ?(.) being constructible (resp., Zariski open) in .. Moreover, we verify this criterion for a wide class of properties P.
44#
發(fā)表于 2025-3-29 04:22:28 | 只看該作者
https://doi.org/10.57088/978-3-7329-9209-6trum of . .(Ω) (corona problem) has attracted some attention. The answer is known to be affirmative for many open sets in C ; see Ref. 4 for a discussion. The answer is not known in ?. . ≥ 2 even for the ball or the polydisk.
45#
發(fā)表于 2025-3-29 09:11:04 | 只看該作者
46#
發(fā)表于 2025-3-29 11:25:33 | 只看該作者
https://doi.org/10.1007/978-3-662-58125-4 volume). Such lists stimulate research, and give more opportunities for researchers to disseminate their results among interested people. Furthermore, such lists can include relevant references, not all of which might be known to a young, isolated researcher.
47#
發(fā)表于 2025-3-29 17:28:49 | 只看該作者
Wissenschaft und Verantwortung,Let . be a complex manifold of dimension . and let .→ . be a holomorphic vector bundle. Given a complex submanifold . of codimension 1, let res. be the residue homomorphism from ...) to ...), where ...) denotes the ?0304-cohomology group of type (.). The purpose of this chapter is to establish the following theorem.
48#
發(fā)表于 2025-3-29 21:28:59 | 只看該作者
49#
發(fā)表于 2025-3-30 00:43:29 | 只看該作者
50#
發(fā)表于 2025-3-30 07:12:05 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 03:02
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
大名县| 鹿泉市| 建湖县| 武安市| 同德县| 罗源县| 伊通| 贵阳市| 句容市| 图木舒克市| 长阳| 盱眙县| 合水县| 贞丰县| 弋阳县| 蓝山县| 高青县| 桂阳县| 稻城县| 杭锦旗| 江华| 西藏| 穆棱市| 合川市| 兰西县| 嵊州市| 渝北区| 乌苏市| 温州市| 清河县| 景德镇市| 策勒县| 伊金霍洛旗| 东城区| 鄂州市| 巴青县| 定结县| 乐东| 藁城市| 鄂托克前旗| 赣州市|