找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Complex Analysis; John M. Howie Textbook 2003 Springer-Verlag London 2003 Analysis.Complex analysis.Complex numbers.Functions of a complex

[復制鏈接]
樓主: nourish
31#
發(fā)表于 2025-3-27 00:08:16 | 只看該作者
32#
發(fā)表于 2025-3-27 01:06:34 | 只看該作者
33#
發(fā)表于 2025-3-27 05:20:28 | 只看該作者
Laurent Series and the Residue Theorem,In Section 3.5 we looked briefly at functions with isolated singularities. It is clear that a function . with an isolated singularity at a point . cannot have a Taylor series centred on .. What it does have is a . series, a generalized version of a Taylor series in which there are negative as well as positive powers of . — ..
34#
發(fā)表于 2025-3-27 11:38:05 | 只看該作者
Applications of Contour Integration,One of the very attractive features of complex analysis is that it can provide elegant and easy proofs of results in real analysis. Let us look again at Example 8.16.
35#
發(fā)表于 2025-3-27 16:45:16 | 只看該作者
Further Topics,In this section we examine an integral that in effect counts the number of poles and zeros of a meromorphic function .. Recall that, if . has Laurent series . at ., then ord(.) = min {.: . ≠ 0}. If ord(.) = . > 0 then .(.) = 0, and we say that c is a . . of the function .. If ord(.) = -. < 0, then . is a . ..
36#
發(fā)表于 2025-3-27 20:22:29 | 只看該作者
John M. HowieSuitable for both pure and applied mathematicians.Takes account of readers‘ varying needs and backgrounds by presenting ideas through worked examples and informal explanations rather than through "dry
37#
發(fā)表于 2025-3-27 23:05:35 | 只看該作者
38#
發(fā)表于 2025-3-28 04:02:09 | 只看該作者
39#
發(fā)表于 2025-3-28 09:43:29 | 只看該作者
40#
發(fā)表于 2025-3-28 10:44:31 | 只看該作者
What Do I Need to Know?,already. Ideally one would like to assume that the student has some basic knowledge of complex numbers and has experienced a fairly substantial first course in real analysis. But while the first of these requirements is realistic the second is not, for in many courses with an “applied” emphasis a co
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-17 08:01
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
林西县| 蒲江县| 兴仁县| 顺义区| 体育| 商水县| 巴林右旗| 民乐县| 宁陕县| 扶风县| 建德市| 呼和浩特市| 乐东| 明水县| 青神县| 米林县| 读书| 安顺市| 五台县| 会东县| 江山市| 大渡口区| 历史| 高尔夫| 阿城市| 湖口县| 孝感市| 儋州市| 称多县| 扎赉特旗| 姜堰市| 大新县| 城固县| 霍林郭勒市| 东乡族自治县| 铜梁县| 伽师县| 加查县| 鄂托克前旗| 阳江市| 宜君县|