找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Complex Analysis; Rolf Busam,Eberhard Freitag Textbook 2009Latest edition Springer-Verlag Berlin Heidelberg 2009 Complex Analysis.Elliptic

[復(fù)制鏈接]
樓主: 揭發(fā)
11#
發(fā)表于 2025-3-23 12:17:48 | 只看該作者
12#
發(fā)表于 2025-3-23 15:55:50 | 只看該作者
Elliptic Functions, lengths of ellipses. Already in 1718 (G.C. FAGNANO), a very special elliptic integral was extensively investigated,.It represents in the interval ]0, 1[ a strictly increasing (continuous) function. So we can consider its inverse function .. A result of N.H. ABEL (1827) affirms that . has a meromorp
13#
發(fā)表于 2025-3-23 18:03:52 | 只看該作者
Elliptic Modular Forms,new type of symmetries. These functions are analytic functions on the upper half-plane with a specific transformation law with respect to the action of the full elliptic modular group (or of certain subgroups) on H, namely.Functions with such a transformation behavior are called ...We will see that
14#
發(fā)表于 2025-3-24 01:58:35 | 只看該作者
15#
發(fā)表于 2025-3-24 04:04:57 | 只看該作者
16#
發(fā)表于 2025-3-24 09:42:52 | 只看該作者
17#
發(fā)表于 2025-3-24 12:38:35 | 只看該作者
Exklusiv und emotional: Sprache im Internet,matically using such expressions and found 4 as a solution of the equation . in the disguised form.Also in the work of G.W. LEIBNIZ (1675) one can find equations of this kind, e.g..In the year 1777 L. EULER introduced the notation . for the . unit.
18#
發(fā)表于 2025-3-24 15:55:38 | 只看該作者
Introduction,matically using such expressions and found 4 as a solution of the equation . in the disguised form.Also in the work of G.W. LEIBNIZ (1675) one can find equations of this kind, e.g..In the year 1777 L. EULER introduced the notation . for the . unit.
19#
發(fā)表于 2025-3-24 19:24:59 | 只看該作者
https://doi.org/10.1007/978-3-322-89369-7C.F. GAUSS— as well as the rather lengthy period of uncertainty and unclarity about them, is an impressive example in the history of mathematics. The historically interested reader should read [Re2]. For more historical remarks about complex numbers see also [CE].
20#
發(fā)表于 2025-3-24 23:23:46 | 只看該作者
Differential Calculus in the Complex Plane C,C.F. GAUSS— as well as the rather lengthy period of uncertainty and unclarity about them, is an impressive example in the history of mathematics. The historically interested reader should read [Re2]. For more historical remarks about complex numbers see also [CE].
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 16:52
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
浠水县| 黑水县| 嘉荫县| 苍梧县| 龙里县| 海城市| 大洼县| 江达县| 白河县| 诸暨市| 潜江市| 临海市| 陵川县| 子洲县| 池州市| 行唐县| 遂平县| 河北区| 江阴市| 广昌县| 宁德市| 宁远县| 天等县| 浪卡子县| 蒙自县| 武强县| 揭阳市| 米易县| 肥西县| 本溪| 苍溪县| 吴旗县| 抚顺县| 仁怀市| 德惠市| 丰台区| 青海省| 涡阳县| 上思县| 农安县| 沽源县|