找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Complex Analysis; In the Spirit of Lip Rubí E. Rodríguez,Irwin Kra,Jane P. Gilman Textbook 2013Latest edition Springer Science+Business Med

[復制鏈接]
樓主: irritants
11#
發(fā)表于 2025-3-23 12:14:32 | 只看該作者
https://doi.org/10.1007/978-3-642-00342-4ize all simply connected domains in the extended complex plane. The first two sections of this chapter study the action of a quotient of the group of two-by-two nonsingular complex matrices on the extended complex plane, namely, the group PSL(2, .) and the projective special linear group. This group
12#
發(fā)表于 2025-3-23 15:53:32 | 只看該作者
13#
發(fā)表于 2025-3-23 21:28:29 | 只看該作者
https://doi.org/10.1007/978-3-658-22569-8 own names. These are, of course, functions that arise naturally and repeatedly in various mathematical settings. Many of these functions are defined by infinite products. Examples of such . functions include Euler’s Γ-function, the Riemann ζ-function, and the Euler Φ-function. We will study only th
14#
發(fā)表于 2025-3-24 00:03:21 | 只看該作者
The Cauchy Theory: Key Consequences,e chapter is very short, it includes proofs of many of the implications of the fundamental theorem in complex function theory (Theorem?1.1). We point out that these relatively compact proofs of a host of major theorems result from the work put into Chap.?4 and earlier chapters.
15#
發(fā)表于 2025-3-24 05:40:45 | 只看該作者
16#
發(fā)表于 2025-3-24 08:21:38 | 只看該作者
Graduate Texts in Mathematicshttp://image.papertrans.cn/c/image/231348.jpg
17#
發(fā)表于 2025-3-24 12:19:06 | 只看該作者
18#
發(fā)表于 2025-3-24 16:15:33 | 只看該作者
19#
發(fā)表于 2025-3-24 20:01:47 | 只看該作者
20#
發(fā)表于 2025-3-25 01:45:23 | 只看該作者
Anja Wildemann,Lena Bien-Miller theory of holomorphic functions, a role beyond enabling the construction of complex transcendental functions that are the extension of the real transcendental functions. A much stronger result holds. All holomorphic functions are (at least locally) convergent power series. This will be proven in the next chapter.
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-15 02:07
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
同仁县| 同德县| 丰镇市| 齐河县| 禄丰县| 罗平县| 龙海市| 海林市| 晋中市| 建昌县| 裕民县| 阿坝| 沂水县| 西城区| 芦山县| 明水县| 高雄市| 克东县| 商洛市| 浮山县| 大庆市| 平泉县| 平度市| 喜德县| 耿马| 韶山市| 广南县| 甘孜| 瑞丽市| 读书| 丰镇市| 宽城| 军事| 冀州市| 马龙县| 长沙县| 衡东县| 哈尔滨市| 安仁县| 年辖:市辖区| 冀州市|