找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Complex Analysis; A Functional Analysi D. H. Luecking,L. A. Rubel Textbook 1984 Springer-Verlag New York Inc. 1984 Analysis.Funktionalanaly

[復(fù)制鏈接]
樓主: CYNIC
11#
發(fā)表于 2025-3-23 10:51:22 | 只看該作者
https://doi.org/10.1007/978-3-642-97615-5dditionally preserves scalar multiplication. It follows from Proposition 5.4 that .(G) and .(G’) are isomorphic as algebras if and only if G and G’ are conformally equivalent. But a ring isomorphism can exist without conformal equivalence.
12#
發(fā)表于 2025-3-23 17:52:16 | 只看該作者
13#
發(fā)表于 2025-3-23 20:46:47 | 只看該作者
Christian Büning,Constantin Wirth(f) = ∫ f(z)dμ(z) when it is necessary to indicate the independent variable. “Measures” have the same properties as continuous linear functionals (which is what they are); for reinforcement, we list them here. Given μ ∈ M.(G):
14#
發(fā)表于 2025-3-23 23:07:22 | 只看該作者
The Dual of ,(G),(f) = ∫ f(z)dμ(z) when it is necessary to indicate the independent variable. “Measures” have the same properties as continuous linear functionals (which is what they are); for reinforcement, we list them here. Given μ ∈ M.(G):
15#
發(fā)表于 2025-3-24 06:00:46 | 只看該作者
16#
發(fā)表于 2025-3-24 08:36:50 | 只看該作者
Interpolation,icit formula. The second is via solving infinitely many linear equations in infinitely many unknowns, the Taylor coefficients. (See [M. Eidelheit] and [P. J. Davis].) The third is via functional analysis—specifically the Banach-Dieudonné theorem. Kere we take the third route, obtaining in the process a functional analysis proof of Theorem 12.18.
17#
發(fā)表于 2025-3-24 14:32:10 | 只看該作者
0172-5939 erial, from the point of view of functional analysis. The main object of study is the algebra H(G) of all holomorphic functions on the open set G, with the topology on H(G) of uniform convergence on compact subsets of G. From this point of vie~, the main theorem of the theory is Theorem 9.5, which c
18#
發(fā)表于 2025-3-24 17:11:08 | 只看該作者
19#
發(fā)表于 2025-3-24 20:08:41 | 只看該作者
20#
發(fā)表于 2025-3-25 01:07:57 | 只看該作者
Complex Analysis978-1-4613-8295-9Series ISSN 0172-5939 Series E-ISSN 2191-6675
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 04:39
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
全州县| 西藏| 新竹市| 连江县| 色达县| 岑溪市| 加查县| 平乡县| 灵武市| 西安市| 紫金县| 宁武县| 贺州市| 瓦房店市| 波密县| 即墨市| 民勤县| 孝昌县| 唐海县| 巧家县| 赤壁市| 泗水县| 怀安县| 泰安市| 化州市| 巴楚县| 五大连池市| 格尔木市| 酒泉市| 昌吉市| 比如县| 扬州市| 青川县| 乌海市| 陆河县| 洮南市| 阳信县| 雷波县| 晋江市| 资源县| 青田县|