找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Complex Analysis; Proceedings of the I Klas Diederich Conference proceedings 1991 Friedr. Vieweg & Sohn Verlagsgesellschaft mbH, Braunschwe

[復制鏈接]
樓主: adulation
31#
發(fā)表于 2025-3-26 21:24:00 | 只看該作者
32#
發(fā)表于 2025-3-27 04:37:34 | 只看該作者
33#
發(fā)表于 2025-3-27 06:43:24 | 只看該作者
,Smooth proper modifications of compact K?hler manifolds,We study the class of compact complex manifolds which are proper modifications of compact K?hler manifolds. It is shown, by means of new results about positive .-closed currents, that they carry a balanced metric. The notion of p-K?hler manifold is introduced in order to attempt a classification of these modifications.
34#
發(fā)表于 2025-3-27 11:49:26 | 只看該作者
,Lp-Estimates for ?? in ?,Fornaess and Sibony [3] proved the following result on the one dimensional ??-operator:Theorem. 1 < . ≤ 2.
35#
發(fā)表于 2025-3-27 17:28:19 | 只看該作者
36#
發(fā)表于 2025-3-27 21:48:26 | 只看該作者
37#
發(fā)表于 2025-3-28 01:28:10 | 只看該作者
Scalar Curvature and Twistor Geometry,Let (M, g) be a 2n-dimensional oriented Riemannian manifold, let P(M) = P(M, SO(2n)) be the principal SO(2n)-bundle of oriented orthonormal frames over M and let Z(M) = ./. be the . of M.
38#
發(fā)表于 2025-3-28 06:08:34 | 只看該作者
,Lp-Estimates with Loss for the Bergman Projection and the Canonical Solution to ??,The aim of this note is to show that, in pseudo-convex domains, the Bergman projection and the canonical solution to the ??-equation satisfy . . estimates with loss: for . > 2, there exists . = .(.) > 2 so that the solution is in . . when the data is in . ..
39#
發(fā)表于 2025-3-28 06:27:37 | 只看該作者
40#
發(fā)表于 2025-3-28 13:09:14 | 只看該作者
,Representing Measures in the Spectrum of ,(Ω),Let Ω be a domain in ?., 0 ∈ Ω and denote by .(Ω) the analytic functions on Ω. (Ω) = .(Ω) ? .(Ω) and .(Ω) = .(Ω) ? .(Ω?) We denote by . the spectrum (= the multiplicative linear functionals) of .(Ω).
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-11 16:21
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
乐亭县| 泰兴市| 许昌市| 南岸区| 建平县| 海安县| 肇东市| 湾仔区| 玛纳斯县| 双城市| 西贡区| 安塞县| 惠水县| 利川市| 乌拉特后旗| 东宁县| 叶城县| 兴山县| 上饶县| 安新县| 黎平县| 三亚市| 安义县| 威海市| 嫩江县| 扶风县| 漳平市| 安陆市| 阿尔山市| 宁夏| 德化县| 伊金霍洛旗| 洪泽县| 临桂县| 轮台县| 海兴县| 庆元县| 南雄市| 军事| 云霄县| 偃师市|