找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Complex Abelian Varieties; Herbert Lange,Christina Birkenhake Book 19921st edition Springer-Verlag Berlin Heidelberg 1992 Abelian varietie

[復(fù)制鏈接]
樓主: 驅(qū)逐
21#
發(fā)表于 2025-3-25 04:21:57 | 只看該作者
Home-Away-Pattern Based Branching Schemes,e take a slightly naive point of view of the notion of “moduli space”: a . of abelian varieties with some additional structure means a complex analytic space or a complex manifold whose points are in some natural one to one correspondence with the elements of the set. We disregard uniqueness and fun
22#
發(fā)表于 2025-3-25 09:04:16 | 只看該作者
Combinatorial Properties of Strength Groups,nvolution′, the Rosati involution. Moreover, in Section 5.5 we classified all such pairs (., ′). In this chapter we study the converse question: which of the pairs (., ′) actually occur as the endomorphism algebra of a polarized abelian variety? To be more precise, for every pair (., ′) we construct
23#
發(fā)表于 2025-3-25 13:39:28 | 只看該作者
24#
發(fā)表于 2025-3-25 17:20:20 | 只看該作者
25#
發(fā)表于 2025-3-25 20:19:20 | 只看該作者
https://doi.org/10.1007/978-3-540-75518-0 a map t from the moduli space .}. of smooth projective curves of genus g to the moduli space.of principally polarized abelian varieties of dimension ., which by Torelli’s Theorem is injective. We thus obtain a 3. - 3 dimensional subvariety .(..) of .. For every point of .(..) one can interpret the
26#
發(fā)表于 2025-3-26 00:17:08 | 只看該作者
Grundlehren der mathematischen Wissenschaftenhttp://image.papertrans.cn/c/image/231336.jpg
27#
發(fā)表于 2025-3-26 06:37:29 | 只看該作者
28#
發(fā)表于 2025-3-26 10:49:55 | 只看該作者
Equations for Abelian Varieties,ng to classical terminology they are called .. The subject of this chapter is to find a set of theta relations which generates the ideal ., and thus describes the subvariety . of ?. completely in terms of equations.
29#
發(fā)表于 2025-3-26 13:41:09 | 只看該作者
Media Coverage of Lesbian Athletes,n of abelian varieties is due to Lefschetz [1] p. 367: a complex torus is an abelian variety if and only if it admits the structure of an algebraic variety. Lefschetz showed that if . is a positive definite line bundle on a complex torus ., then .. is very ample for any . ≥ 3, i. e. the map .associated to the line bundle .. is an embedding.
30#
發(fā)表于 2025-3-26 16:47:11 | 只看該作者
Home-Away-Pattern Based Branching Schemes,ng to classical terminology they are called .. The subject of this chapter is to find a set of theta relations which generates the ideal ., and thus describes the subvariety . of ?. completely in terms of equations.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 19:39
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
茶陵县| 丹东市| 富裕县| 合江县| 张掖市| 苍梧县| 柞水县| 河津市| 长海县| 仲巴县| 和田市| 罗甸县| 牡丹江市| 上高县| 文水县| 南丹县| 浦江县| 西吉县| 崇文区| 洛扎县| 淳安县| 千阳县| 留坝县| 东乡| 玉溪市| 吉木乃县| 四会市| 江油市| 土默特右旗| 社旗县| 乳源| 沂南县| 安康市| 武清区| 文安县| 乐昌市| 丰顺县| 仁化县| 滨州市| 舞阳县| 济阳县|