找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Complementarity, Duality and Symmetry in Nonlinear Mechanics; Proceedings of the I David Y. Gao Conference proceedings 2004 Springer Scienc

[復(fù)制鏈接]
樓主: Odious
61#
發(fā)表于 2025-4-1 02:11:09 | 只看該作者
https://doi.org/10.1007/978-90-481-9577-0Boundary value problem; Finite; Fundament; calculus; mathematics; optimization; structure; theorem; partial
62#
發(fā)表于 2025-4-1 09:02:27 | 只看該作者
63#
發(fā)表于 2025-4-1 12:07:44 | 只看該作者
https://doi.org/10.1007/978-3-642-55519-0Many problems of classical mechanics are variational in nature, but not convex. This paper shows how the duality theory of convex optimization can be extended to classical mechanics. It is shown in particular that there is a duality theory for functions of square matrices which factor through the determinant.
64#
發(fā)表于 2025-4-1 16:41:36 | 只看該作者
65#
發(fā)表于 2025-4-1 20:25:48 | 只看該作者
https://doi.org/10.1007/978-3-322-94840-3This paper describes dual formulations of two entropy optimization principles, Jaynes’ maximum entropy and Kullback-Leibler’s minimum cross-entropy principles. Particular emphases are given to their applications in various optimization problems such as minimax, complementarity and nonlinear programming problems.
66#
發(fā)表于 2025-4-1 23:08:42 | 只看該作者
67#
發(fā)表于 2025-4-2 05:47:41 | 只看該作者
68#
發(fā)表于 2025-4-2 08:33:13 | 只看該作者
Non-Convex Duality,Many problems of classical mechanics are variational in nature, but not convex. This paper shows how the duality theory of convex optimization can be extended to classical mechanics. It is shown in particular that there is a duality theory for functions of square matrices which factor through the determinant.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-17 05:53
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
静宁县| 理塘县| 水城县| 商洛市| 东阳市| 洞头县| 台南县| 广饶县| 正镶白旗| 灵璧县| 吴堡县| 德昌县| 江北区| 星子县| 屏东市| 闵行区| 龙南县| 晋州市| 贵港市| 射阳县| 宜阳县| 福泉市| 杭州市| 辽阳市| 济阳县| 仁寿县| 囊谦县| 怀柔区| 集安市| 瑞安市| 嫩江县| 扶余县| 海晏县| 吴堡县| 洞口县| 田林县| 岳阳县| 龙游县| 沙田区| 安康市| 肥西县|