找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Comparison Finsler Geometry; Shin-ichi Ohta Book 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer

[復(fù)制鏈接]
樓主: 劉興旺
51#
發(fā)表于 2025-3-30 08:21:54 | 只看該作者
https://doi.org/10.1007/BFb0116611 introduce Berwald spaces, Hilbert and Funk geometries, and Teichmüller spaces and discuss their characteristic properties..We will revisit some of these examples in Chap. . in the context of measured Finsler manifolds (i.e., Finsler manifolds equipped with measures).
52#
發(fā)表于 2025-3-30 12:48:27 | 只看該作者
53#
發(fā)表于 2025-3-30 16:58:14 | 只看該作者
Properties of Geodesicstion for the energy functional. To this end, some important quantities such as the fundamental and Cartan tensors are introduced. We will see that the metric definition of geodesics coincides with the variational definition as solutions to the geodesic equation. We also prove the Finsler analogue of
54#
發(fā)表于 2025-3-30 21:59:30 | 只看該作者
CurvatureThis argument goes back to Ludwig Berwald’s important posthumous paper..The appearance of a geodesic variation reminds us of a characterization of covariant derivatives by using the Riemannian metric .. associated with a vector field .? whose integral curves are geodesics. In fact, this viewpoint le
55#
發(fā)表于 2025-3-31 04:02:53 | 只看該作者
56#
發(fā)表于 2025-3-31 06:06:25 | 只看該作者
Variation Formulas for Arclength along geodesics, including the study of cut and conjugate points. The first variation formula is closely related to the geodesic equation, which was introduced as the Euler–Lagrange equation for the energy functional. The second variation formula will be related to the flag curvature.
57#
發(fā)表于 2025-3-31 12:52:44 | 只看該作者
58#
發(fā)表于 2025-3-31 14:18:29 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-19 23:52
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
睢宁县| 东乡族自治县| 渭南市| 隆回县| 平度市| 漳平市| 徐州市| 如东县| 金塔县| 康定县| 旺苍县| 涞水县| 山东| 咸丰县| 施甸县| 娄底市| 讷河市| 威信县| 嫩江县| 富宁县| 河南省| 茂名市| 新绛县| 岳阳县| 云浮市| 锦屏县| 新巴尔虎左旗| 绥化市| 曲沃县| 英山县| 临夏县| 伊宁县| 怀仁县| 龙海市| 象州县| 山丹县| 库伦旗| 天台县| 蕲春县| 灵宝市| 阳春市|