找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Compact Riemann Surfaces; Raghavan Narasimhan Book 1992 Springer Basel AG 1992 Finite.Fundamental theorem of calculus.Morphism.algebra.dif

[復(fù)制鏈接]
樓主: Monsoon
41#
發(fā)表于 2025-3-28 18:02:22 | 只看該作者
https://doi.org/10.1007/978-3-531-91370-4 give here is due to Henrik Martens [12]. There are more “geometric” proofs, some of which will be found in Griffiths-Harris [9] or Arbarello-Cornalba-Griffiths-Harris [10]. We begin with a general fact about complex tori.
42#
發(fā)表于 2025-3-28 22:34:28 | 只看該作者
The Sheaf of Germs of Holomorphic Functions,ch pairs (., .) and (., .) are said to be equivalent, and define the same germ of holomorphic function at a, if there exists an open neighbourhood . of ., . ? . ∩ ., such that . = .. An equivalence class is called a germ of holomorphic function at .; the class of a pair (.) is called the germ of . a
43#
發(fā)表于 2025-3-29 02:30:10 | 只看該作者
The Riemann Surface of an Algebraic Function,, then .is a finite covering (of .-sheets). In particular, π. (.. ? .) has only finitely many connected components. Moreover, if . is a connected component of .’, then π’|. is again a covering, and so maps . onto P. ? .. Hence .’ has only finitely many connected components. (We shall see below that
44#
發(fā)表于 2025-3-29 07:08:57 | 只看該作者
45#
發(fā)表于 2025-3-29 10:05:14 | 只看該作者
46#
發(fā)表于 2025-3-29 13:22:25 | 只看該作者
47#
發(fā)表于 2025-3-29 18:01:24 | 只看該作者
https://doi.org/10.1007/978-3-663-11402-4f ., . ? . ∩ ., such that . = .. An equivalence class is called a germ of holomorphic function at .; the class of a pair (.) is called the germ of . at . and denoted by ... The value at . of .. is defined by ..(.) .(.) for any pair (.) defining ...
48#
發(fā)表于 2025-3-29 21:03:21 | 只看該作者
,Das europ?ische Mehrebenensystem,ine (or even vector) bundle on ?. is holomorphically trivial. Let . be a trivialisation. If λ ∈ Λ and . ∈ ?., then the isomorphisms . differ by multiplication by a constant since . if we denote this constant by φλ(.), then for λ ∈ Λ, . →φ.(.) is a holomorphic function without zeros, and we have, for λ, . ∈ Λ,
49#
發(fā)表于 2025-3-30 00:56:51 | 只看該作者
The Sheaf of Germs of Holomorphic Functions,f ., . ? . ∩ ., such that . = .. An equivalence class is called a germ of holomorphic function at .; the class of a pair (.) is called the germ of . at . and denoted by ... The value at . of .. is defined by ..(.) .(.) for any pair (.) defining ...
50#
發(fā)表于 2025-3-30 06:09:06 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-16 18:26
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
汉阴县| 屯昌县| 玉树县| 奈曼旗| 依兰县| 邻水| 封开县| 常山县| 鹿邑县| 巧家县| 延寿县| 宁国市| 信宜市| 芒康县| 黔东| 余庆县| 恩施市| 莒南县| 伊宁县| 汕尾市| 新龙县| 封丘县| 厦门市| 建瓯市| 潼南县| 弥勒县| 巫山县| 哈巴河县| 瑞丽市| 营山县| 峨边| 海口市| 泸定县| 湘潭县| 陆河县| 阳山县| 洱源县| 常宁市| 巩留县| 九龙坡区| 肃宁县|