找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Commutative Algebras of Toeplitz Operators on the Bergman Space; Nikolai L. Vasilevski Book 2008 Birkh?user Basel 2008 Bergman space.Compl

[復制鏈接]
樓主: palliative
21#
發(fā)表于 2025-3-25 06:25:53 | 只看該作者
Toeplitz Operators on the Unit Disk with Radial Symbols,As follows, for example, from Theorem 2.8.3, the Toeplitz operator with radial defining symbols ., which is continuous at the boundary point 1, has a trivial structure, nothing but a compact perturbation of a scalar operator, .=..
22#
發(fā)表于 2025-3-25 07:47:07 | 只看該作者
23#
發(fā)表于 2025-3-25 13:41:45 | 只看該作者
Anatomy of the Algebra Generated by Toeplitz Operators with Piece-wise continuous Symbols,In this chapter we continue the study of the .-algebra generated by Toeplitz operators . with piece-wise continuous defining symbols . acting on the Bergman space (.) on the unit disk .. Our aim here is to describe explicitly each operator from this algebra and to characterize the Toeplitz operators which belong to the algebra.
24#
發(fā)表于 2025-3-25 17:18:31 | 只看該作者
25#
發(fā)表于 2025-3-25 20:56:03 | 只看該作者
Prologue,not exceptional in this sense. It will be used systematically in the book and will be supplied with different adjectives clarifying its different meanings: Fredholm symbol, defining symbol, Wick symbol, anti-Wick symbol, etc. That is why we would like to comment first on its meanings and usage.
26#
發(fā)表于 2025-3-26 03:02:10 | 只看該作者
Commutative Algebras of Toeplitz Operators,he unit disk, considered as the hyperbolic plane. Theorem 10.4.1 shows that the same classes of defining symbols generate commutative .-algebras of Toeplitz operators on . Bergman space. At the same time the principal question, .-., has remained open.
27#
發(fā)表于 2025-3-26 05:14:58 | 只看該作者
https://doi.org/10.1007/978-3-7643-8726-6Bergman space; Complex analysis; Operator algebra; Operator theory; Toeplitz operator
28#
發(fā)表于 2025-3-26 10:48:51 | 只看該作者
Birkh?user Basel 2008
29#
發(fā)表于 2025-3-26 15:37:05 | 只看該作者
30#
發(fā)表于 2025-3-26 17:13:09 | 只看該作者
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2026-1-21 19:07
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
灵寿县| 湾仔区| 乌兰浩特市| 南召县| 丹阳市| 滦平县| 历史| 长兴县| 凌海市| 剑川县| 宜丰县| 昌平区| 哈巴河县| 固镇县| 大方县| 富平县| 慈利县| 阜平县| 中江县| 文安县| 调兵山市| 林芝县| 时尚| 雷波县| 孝昌县| 厦门市| 东丽区| 石门县| 西城区| 元江| 城口县| 桐庐县| 蚌埠市| 嫩江县| 教育| 江达县| 沭阳县| 康定县| 白水县| 保亭| 新宁县|