找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Community Search over Big Graphs; Xin Huang,Laks V. S. Lakshmanan,Jianliang Xu Book 2019 Springer Nature Switzerland AG 2019

[復(fù)制鏈接]
樓主: commingle
11#
發(fā)表于 2025-3-23 10:13:47 | 只看該作者
12#
發(fā)表于 2025-3-23 14:55:41 | 只看該作者
Further Readings and Future Directions,This chapter first lists the community search models that are not detailed in the previous chapters. We then conclude the book by discussing future directions and open problems for further research in community search over large graphs.
13#
發(fā)表于 2025-3-23 21:44:30 | 只看該作者
14#
發(fā)表于 2025-3-24 01:29:12 | 只看該作者
2153-5418 vailable real-world datasets and useful tools for facilitating further research, and by offering further readings and future directions of research in this impo978-3-031-00746-0978-3-031-01874-9Series ISSN 2153-5418 Series E-ISSN 2153-5426
15#
發(fā)表于 2025-3-24 04:35:16 | 只看該作者
Book 2019thms, and applications, and provide a comprehensive comparison of the existing techniques. This book finally concludes by listing publicly available real-world datasets and useful tools for facilitating further research, and by offering further readings and future directions of research in this impo
16#
發(fā)表于 2025-3-24 08:59:28 | 只看該作者
2153-5418 logical, collaboration, and communication networks. Recently, community search over graphs has attracted significantly increasing attention, from small, simple, and static graphs to big, evolving, attributed, and location-based graphs...In this book, we first review the basic concepts of networks, c
17#
發(fā)表于 2025-3-24 11:20:55 | 只看該作者
18#
發(fā)表于 2025-3-24 18:42:28 | 只看該作者
Birmingham’s Postindustrial Metall community search algorithms discussed in the previous chapters do not consider the vertices’ spatial information. In this chapter, we introduce the techniques of searching geo-social groups in geo-social networks by considering both the communities’ structural cohesiveness and spatial proximity.
19#
發(fā)表于 2025-3-24 22:15:45 | 只看該作者
Attributed Community Search,ction (PPI) networks, citation graphs, and collaboration networks, nodes tend to have attributes. Most simple structural community search algorithms ignore these attributes and cannot find communities with good cohesion w.r.t. their node attributes.
20#
發(fā)表于 2025-3-25 01:42:51 | 只看該作者
Geo-Social Group Search,l community search algorithms discussed in the previous chapters do not consider the vertices’ spatial information. In this chapter, we introduce the techniques of searching geo-social groups in geo-social networks by considering both the communities’ structural cohesiveness and spatial proximity.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-25 12:21
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
肥东县| 晋宁县| 台山市| 西乌珠穆沁旗| 四子王旗| 洞口县| 通海县| 喜德县| 商都县| 靖江市| 宁南县| 丰县| 辽阳县| 广灵县| 靖宇县| 托克托县| 赣州市| 图片| 囊谦县| 固始县| 神木县| 德惠市| 赤城县| 贵港市| 牡丹江市| 闻喜县| 昌邑市| 房产| 长寿区| 乐平市| 普宁市| 孙吴县| 涡阳县| 和田市| 青神县| 桂东县| 曲阳县| 白朗县| 临西县| 成武县| 丰原市|