找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Communications, Signal Processing, and Systems; Proceedings of the 2 Qilian Liang,Xin Liu,Baoju Zhang Conference proceedings 2020 Springer

[復(fù)制鏈接]
樓主: 貪吃的人
41#
發(fā)表于 2025-3-28 18:40:21 | 只看該作者
Based on Deep Learning CSI Recovery for Uplink Massive Device Dynamic Internet of Thinggorithm suitable for the sparse structure and obtain more accurate channel state information of dynamic IoT networks, though these numerical results, under the premise of guaranteeing performance, can greatly reduce the complexity of the algorithm.
42#
發(fā)表于 2025-3-28 19:31:03 | 只看該作者
Imbalanced Data Classification Method Based on Ensemble Learning result is generated by weighted voting. In the experiments, six UCI datasets are tested, and the experimental results show that the method is highly representative and can effectively improve the classification ability.
43#
發(fā)表于 2025-3-28 23:37:10 | 只看該作者
Bayesian Method-Based Learning Automata for Two-Player Stochastic Games with Incomplete Informationree property indicates that a set of parameters in the scheme can be universally applicable for all configurations of games. Besides, simulation results demonstrate that BPFLA has much faster convergence rate than traditional schemes using games of learning automata with equal or higher accuracy.
44#
發(fā)表于 2025-3-29 03:14:42 | 只看該作者
A Learning Automata-Based Compression Scheme for Convolutional Neural Networkete insignificant convolution kernels according to the actual requirements. According to the results of experiments, the proposed scheduling method can effectively compress the number of convolutional kernels at the expense of losing weak classification accuracy.
45#
發(fā)表于 2025-3-29 07:35:48 | 只看該作者
46#
發(fā)表于 2025-3-29 13:30:06 | 只看該作者
A Multi-label Scene Categorization Model Based on Deep Convolutional Neural Networksification model utilizing deep convolutional neural network (CNN) inspired by Inception-v4 [.] on this basis. Experiments demonstrate that the model proposed achieves an accuracy of 94.125% on the test set and thus can be deployed into practical intelligent surveillance scenarios.
47#
發(fā)表于 2025-3-29 18:13:25 | 只看該作者
48#
發(fā)表于 2025-3-29 23:36:27 | 只看該作者
49#
發(fā)表于 2025-3-30 03:48:23 | 只看該作者
Astronomy and Astrophysics Librarysome special applications such as in reimbursement of value-added tax (VAT) invoices. This paper proposes two OCR techniques by using deep convolutional neural network (CNN) and residual network (ResNet), respectively. According to our test dataset, the formerly proposed techniques can reach up to 97.08%, while the latter can increase to 99.38%.
50#
發(fā)表于 2025-3-30 06:59:20 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-21 21:54
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
独山县| 肥东县| 扎兰屯市| 和顺县| 宜昌市| 阳信县| 库尔勒市| 闸北区| 武定县| 涡阳县| 大港区| 南靖县| 盐边县| 抚宁县| 罗江县| 潼南县| 乡宁县| 济阳县| 和田市| 黎城县| 宜章县| 墨玉县| 乌兰县| 宁晋县| 临泉县| 九江县| 陆丰市| 宁国市| 溧水县| 临朐县| 分宜县| 内丘县| 康马县| 连山| 黎城县| 阜平县| 缙云县| 五常市| 福建省| 启东市| 扎鲁特旗|