找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Combinatorics on Words; 13th International C Thierry Lecroq,Svetlana Puzynina Conference proceedings 2021 Springer Nature Switzerland AG 20

[復(fù)制鏈接]
樓主: 戰(zhàn)神
41#
發(fā)表于 2025-3-28 17:11:14 | 只看該作者
42#
發(fā)表于 2025-3-28 22:44:47 | 只看該作者
Kaan Y?ld?zg?z,Hüseyin Murat ?elik. is a non-erasing morphism. A pattern . is said to be .-avoidable if there exists an infinite word over a .-letter alphabet that avoids .. A pattern is . if every variable occurs at least twice. Doubled patterns are known to be 3-avoidable. Currie, Mol, and Rampersad have considered a generalized n
43#
發(fā)表于 2025-3-29 02:11:53 | 只看該作者
S. Christalin Nelson,J. Dhiviya Roseeftmost 1 with the bit to its right. Flip-swap languages model many combinatorial objects including necklaces, Lyndon words, prefix normal words, left factors of .-ary Dyck words, and feasible solutions to 0-1 knapsack problems. We prove that any flip-swap language forms a cyclic 2-Gray code when li
44#
發(fā)表于 2025-3-29 04:30:50 | 只看該作者
Jagana Bihari Padhy,Bijayananda Patnaik factor. We consider equations in the so-called .-binomial monoid defined by the .-binomial equivalence relation on words. We remark that the .-binomial monoid possesses the compactness property, namely, any system of equations has a finite equivalent subsystem. We further show an upper bound, depen
45#
發(fā)表于 2025-3-29 07:53:55 | 只看該作者
46#
發(fā)表于 2025-3-29 14:01:55 | 只看該作者
978-3-030-85087-6Springer Nature Switzerland AG 2021
47#
發(fā)表于 2025-3-29 18:43:58 | 只看該作者
Lecture Notes in Computer Sciencehttp://image.papertrans.cn/c/image/230055.jpg
48#
發(fā)表于 2025-3-29 23:40:11 | 只看該作者
Synchronized Sequences,f words. Moreover, if sequence is synchronized, then one can use a theorem-prover such as . to “automatically” prove many results about it, with little human intervention. In this paper I will prove some of the basic properties of synchronization, and give a number of applications to combinatorics on words.
49#
發(fā)表于 2025-3-30 00:03:17 | 只看該作者
50#
發(fā)表于 2025-3-30 07:32:55 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-2-1 02:51
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
宣武区| 崇义县| 思南县| 当雄县| 新巴尔虎左旗| 固镇县| 晋中市| 五大连池市| 凤山县| 满洲里市| 宁陵县| 五河县| 广州市| 临城县| 阿拉善左旗| 安陆市| 隆化县| 招远市| 邯郸市| 江华| 吉安县| 兰西县| 同心县| 清原| 牟定县| 科技| 大安市| 衡阳县| 瓦房店市| 聂拉木县| 洛阳市| 湖北省| 周至县| 庆阳市| 晋城| 太谷县| 溧阳市| 即墨市| 新乡县| 清丰县| 修武县|