找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Combinatorics and Finite Geometry; Steven T. Dougherty Textbook 2020 The Editor(s) (if applicable) and The Author(s), under exclusive lice

[復(fù)制鏈接]
樓主: GUST
21#
發(fā)表于 2025-3-25 03:35:59 | 只看該作者
https://doi.org/10.1007/978-981-16-6879-1This chapter describes a series of combinatorial objects including Hadamard matrices, Latin hypercubes, association schemes, and partially ordered sets. The algebraic and combinatorial properties of these objects are discussed.
22#
發(fā)表于 2025-3-25 08:25:12 | 只看該作者
23#
發(fā)表于 2025-3-25 13:13:03 | 只看該作者
24#
發(fā)表于 2025-3-25 19:53:15 | 只看該作者
Sèmévo Ida Tognisse,Jules DegilaThis chapter introduces a version of the well-known Tic-Tac-Toe game which can be played on designs and finite geometries. This game helps develop students’ geometric intuition. The theory of combinatorial games is applied to determine when the first player has a winning strategy and when the second player can force a draw.
25#
發(fā)表于 2025-3-25 23:54:15 | 只看該作者
https://doi.org/10.1007/978-981-19-2764-5Early in the text we encountered the following diagram.
26#
發(fā)表于 2025-3-26 00:15:46 | 只看該作者
27#
發(fā)表于 2025-3-26 05:37:29 | 只看該作者
28#
發(fā)表于 2025-3-26 11:47:20 | 只看該作者
Affine and Projective Planes,This chapter gives fundamental results on finite affine and projective planes. It provides detailed proofs on various counting results concerning these planes such as the number of points, lines, points on a line, and lines through a point. It describes the canonical relation between affine planes and mutually orthogonal Latin squares.
29#
發(fā)表于 2025-3-26 15:44:05 | 只看該作者
30#
發(fā)表于 2025-3-26 17:31:03 | 只看該作者
Higher Dimensional Finite Geometry,This chapter gives a basic introduction of linear algebra and uses this setting to describe higher dimensional affine and projective geometries. It includes proofs of the Bruck–Ryser theorem and Desargues’ theorem. It further describes Baer subplanes, arcs, and ovals. It concludes with a description of certain non-Desarguesian planes.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 11:51
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
阳高县| 平塘县| 双城市| 长兴县| 关岭| 太和县| 谷城县| 平遥县| 乐业县| 临清市| 五峰| 璧山县| 汨罗市| 色达县| 五河县| 连南| 漳平市| 怀集县| 九台市| SHOW| 宕昌县| 仪征市| 开远市| 长汀县| 凤翔县| 青浦区| 平乐县| 塔城市| 贵德县| 晋城| 武义县| 阜南县| 正镶白旗| 内黄县| 湾仔区| 霍邱县| 乌拉特前旗| 周口市| 理塘县| 浙江省| 渝中区|