找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Combinatorics and Finite Geometry; Steven T. Dougherty Textbook 2020 The Editor(s) (if applicable) and The Author(s), under exclusive lice

[復制鏈接]
樓主: GUST
11#
發(fā)表于 2025-3-23 13:01:10 | 只看該作者
Automorphism Groups,tructure is a group. It is generally the first structure one encounters in studying abstract algebra. We shall begin with a very elementary study of finite groups, and then we shall study the groups associated with various combinatorial structures.
12#
發(fā)表于 2025-3-23 15:46:32 | 只看該作者
13#
發(fā)表于 2025-3-23 18:42:56 | 只看該作者
Sèmévo Ida Tognisse,Jules Degilatructure is a group. It is generally the first structure one encounters in studying abstract algebra. We shall begin with a very elementary study of finite groups, and then we shall study the groups associated with various combinatorial structures.
14#
發(fā)表于 2025-3-23 23:38:43 | 只看該作者
15#
發(fā)表于 2025-3-24 04:36:31 | 只看該作者
16#
發(fā)表于 2025-3-24 07:25:45 | 只看該作者
Anuj Gupta,Kapil Gupta,Sumit SarohaThis chapter describes mutually orthogonal Latin squares by beginning with their origins in the 36 officer problem. It describes the major open problems concerning Latin squares. Further results are given describing the structure of Latin squares.
17#
發(fā)表于 2025-3-24 11:28:30 | 只看該作者
D. N. Katole,M. B. Daigavane,P. M. DaigavaneThis chapter gives fundamental results on finite affine and projective planes. It provides detailed proofs on various counting results concerning these planes such as the number of points, lines, points on a line, and lines through a point. It describes the canonical relation between affine planes and mutually orthogonal Latin squares.
18#
發(fā)表于 2025-3-24 17:31:28 | 只看該作者
Rashmi Ashok Panherkar,Prajakta VaidyaChapter 5 gives foundational results on graph theory including a study of simple and directed graphs. It investigates the coloring of graphs and the connection between directed graphs and relations.
19#
發(fā)表于 2025-3-24 23:03:22 | 只看該作者
20#
發(fā)表于 2025-3-24 23:14:51 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 16:16
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
黑水县| 正安县| 梨树县| 南靖县| 芜湖县| 桃园市| 西青区| 鄂伦春自治旗| 泰安市| 溧阳市| 玉环县| 乌审旗| 温泉县| 那坡县| 凌云县| 哈尔滨市| 磐石市| 关岭| 新蔡县| 福海县| 清丰县| 裕民县| 凤城市| 色达县| 明光市| 永宁县| 郓城县| 甘孜| 缙云县| 金阳县| 中西区| 策勒县| 莱阳市| 屏边| 岢岚县| 开平市| 兴义市| 西宁市| 木兰县| 沁阳市| 乐业县|