找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Combinatorial Matrix Theory and Generalized Inverses of Matrices; Ravindra B. Bapat,Steve J. Kirkland,Simo Puntanen Book 2013 Springer Ind

[復(fù)制鏈接]
樓主: melancholy
31#
發(fā)表于 2025-3-26 22:31:19 | 只看該作者
An Illustrated Introduction to Some Old Magic Squares from India,s in the history and philosophy of magic squares and the related magic matrices and in the related bibliography and biographies. We try to illustrate our findings as much as possible and, whenever feasible, with images of postage stamps and other philatelic items.
32#
發(fā)表于 2025-3-27 03:58:56 | 只看該作者
33#
發(fā)表于 2025-3-27 08:22:31 | 只看該作者
34#
發(fā)表于 2025-3-27 09:33:04 | 只看該作者
35#
發(fā)表于 2025-3-27 17:10:54 | 只看該作者
Sliding on Clean (Dry) Surfaces,continues to be a . under .. We give a thorough proof of a result originally due to Mitra and Moore (Sankhyā, Ser. A 35:139–152, .). While doing this, we will review some useful properties of the proper eigenvalues in the spirit of Rao and Mitra?(Generalized Inverse of Matrices and Its Applications,
36#
發(fā)表于 2025-3-27 19:35:03 | 只看該作者
37#
發(fā)表于 2025-3-28 00:35:47 | 只看該作者
Hocine Imine,Leonid Fridman,Mohamed Djemaiained. The results are generalized to obtain the Moore–Penrose inverse of operators of the form .. Applications to nonnegativity of the Moore–Penrose inverse and operator partial orders are considered.
38#
發(fā)表于 2025-3-28 02:09:38 | 只看該作者
39#
發(fā)表于 2025-3-28 09:20:52 | 只看該作者
https://doi.org/10.1007/978-3-642-03448-0of writing a square matrix as a sum of idempotent matrices. Much work was done for real matrices and for matrices over other algebraic structures. We shall consider some of this work and present some new results for matrices over projective free rings.
40#
發(fā)表于 2025-3-28 12:14:37 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 13:34
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
土默特左旗| 稷山县| 华池县| 巧家县| 闸北区| 乌什县| 兴隆县| 盐边县| 德兴市| 宣武区| 阳江市| 衡水市| 西城区| 卢湾区| 麻栗坡县| 东丽区| 临清市| 通山县| 乡城县| 沙坪坝区| 合川市| 翁牛特旗| 镶黄旗| 宜宾市| 鄯善县| 盐津县| 且末县| 石景山区| 香格里拉县| 安泽县| 绥滨县| 乌兰察布市| 莒南县| 德化县| 闵行区| 金湖县| 阿瓦提县| 木里| 平罗县| 通河县| 合川市|