找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Combinatorial Matrix Theory and Generalized Inverses of Matrices; Ravindra B. Bapat,Steve J. Kirkland,Simo Puntanen Book 2013 Springer Ind

[復制鏈接]
樓主: melancholy
31#
發(fā)表于 2025-3-26 22:31:19 | 只看該作者
An Illustrated Introduction to Some Old Magic Squares from India,s in the history and philosophy of magic squares and the related magic matrices and in the related bibliography and biographies. We try to illustrate our findings as much as possible and, whenever feasible, with images of postage stamps and other philatelic items.
32#
發(fā)表于 2025-3-27 03:58:56 | 只看該作者
33#
發(fā)表于 2025-3-27 08:22:31 | 只看該作者
34#
發(fā)表于 2025-3-27 09:33:04 | 只看該作者
35#
發(fā)表于 2025-3-27 17:10:54 | 只看該作者
Sliding on Clean (Dry) Surfaces,continues to be a . under .. We give a thorough proof of a result originally due to Mitra and Moore (Sankhyā, Ser. A 35:139–152, .). While doing this, we will review some useful properties of the proper eigenvalues in the spirit of Rao and Mitra?(Generalized Inverse of Matrices and Its Applications,
36#
發(fā)表于 2025-3-27 19:35:03 | 只看該作者
37#
發(fā)表于 2025-3-28 00:35:47 | 只看該作者
Hocine Imine,Leonid Fridman,Mohamed Djemaiained. The results are generalized to obtain the Moore–Penrose inverse of operators of the form .. Applications to nonnegativity of the Moore–Penrose inverse and operator partial orders are considered.
38#
發(fā)表于 2025-3-28 02:09:38 | 只看該作者
39#
發(fā)表于 2025-3-28 09:20:52 | 只看該作者
https://doi.org/10.1007/978-3-642-03448-0of writing a square matrix as a sum of idempotent matrices. Much work was done for real matrices and for matrices over other algebraic structures. We shall consider some of this work and present some new results for matrices over projective free rings.
40#
發(fā)表于 2025-3-28 12:14:37 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 04:47
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
马边| 永济市| 平遥县| 潼南县| 肃南| 麻江县| 辉南县| 旌德县| 台北县| 江川县| 景东| 耿马| 富阳市| 江孜县| 贵定县| 南城县| 忻城县| 郴州市| 东明县| 临颍县| 大邑县| 成安县| 哈尔滨市| 绥德县| 新营市| 阳泉市| 金坛市| 靖江市| 惠州市| 大厂| 太白县| 科尔| 虹口区| 宁武县| 新龙县| 兰西县| 赫章县| 伊川县| 湟中县| 泰安市| 含山县|