找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Combinatorial Mathematics VIII; Proceedings of the E Kevin L. McAvaney Conference proceedings 1981 Springer-Verlag Berlin Heidelberg 1981 L

[復制鏈接]
樓主: incoherent
31#
發(fā)表于 2025-3-26 23:05:06 | 只看該作者
32#
發(fā)表于 2025-3-27 04:41:36 | 只看該作者
33#
發(fā)表于 2025-3-27 05:28:20 | 只看該作者
https://doi.org/10.1007/978-981-15-7175-6sion of the generation of graphs, digraphs, tournaments, self-complementary graphe, trees, and others. The present state of the art of graph generation is presented, together with some ideas on future prospects.
34#
發(fā)表于 2025-3-27 10:33:29 | 只看該作者
Stress and Sleepiness in the 24-h Societyogether in a well-behaved way we have a distributive block structure. We show that the orbits of the automorphism group of a distributive block structure on pairs of experimental units are precisely the sets which the combinatorial structure leads one to expect. Possible generalizations of this result are discussed.
35#
發(fā)表于 2025-3-27 16:18:07 | 只看該作者
36#
發(fā)表于 2025-3-27 17:49:03 | 只看該作者
37#
發(fā)表于 2025-3-28 01:23:43 | 只看該作者
38#
發(fā)表于 2025-3-28 04:57:12 | 只看該作者
Distributive block structures and their automorphisms,ogether in a well-behaved way we have a distributive block structure. We show that the orbits of the automorphism group of a distributive block structure on pairs of experimental units are precisely the sets which the combinatorial structure leads one to expect. Possible generalizations of this result are discussed.
39#
發(fā)表于 2025-3-28 07:36:06 | 只看該作者
A construction for a family of sets and its application to matroids,n applied to . then gives .. For each subset . of ., . for exactly one pair of .∈. and corresponding .∈.. When the family . is the basis collection of a matroid on . can be described simply in terms of the matroid structure. A polynomial is defined which, in this latter case, is the Tutte polynomial of the matroid.
40#
發(fā)表于 2025-3-28 10:57:45 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 16:44
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
禹城市| 百色市| 荔波县| 红原县| 左贡县| 怀远县| 巨鹿县| 巨野县| 枝江市| 方山县| 堆龙德庆县| 犍为县| 东平县| 徐水县| 玉溪市| 晋城| 万盛区| 吴江市| 临潭县| 石嘴山市| 全州县| 鞍山市| 海口市| 苏尼特右旗| 宜良县| 凌云县| 民县| 凤城市| 长治县| 黄石市| 禄丰县| 兰西县| 淄博市| 金塔县| 门头沟区| 永康市| 京山县| 韩城市| 双柏县| 宁城县| 洞头县|