找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Combinatorial Mathematics; Proceedings of the I D. A. Holton,Jennifer Seberry Conference proceedings 1978 Springer-Verlag Berlin Heidelberg

[復(fù)制鏈接]
樓主: POL
21#
發(fā)表于 2025-3-25 05:19:33 | 只看該作者
22#
發(fā)表于 2025-3-25 09:38:05 | 只看該作者
Recent progress and unsolved problems in dominance theory,A survey of (unsolved) combinatorial, algebraic and statistical problems which have arisen since 1950 and are closely related to dominance or majorization.
23#
發(fā)表于 2025-3-25 14:58:11 | 只看該作者
24#
發(fā)表于 2025-3-25 17:52:00 | 只看該作者
25#
發(fā)表于 2025-3-25 22:57:31 | 只看該作者
Decompositions of complete symmetric digraphs into the four oriented quadrilaterals,We provide necessary and sufficient conditions for the existence of a decomposition of the set of arcs of a complete symmetric digraph into each of the four oriented quadrilaterals.
26#
發(fā)表于 2025-3-26 01:56:01 | 只看該作者
27#
發(fā)表于 2025-3-26 06:09:06 | 只看該作者
28#
發(fā)表于 2025-3-26 11:04:38 | 只看該作者
Soňa Nev?ímalová,Oliviero Bruni index c(G) of G is the minimum of the index [A(X) : L.] taken over all Cayley graphs X of G. The present article is expository, reporting what is known to date about Cayley indices of groups and where some of the results may be found. The general pattern thus far indicates that, with finitely many
29#
發(fā)表于 2025-3-26 13:40:19 | 只看該作者
Soňa Nev?ímalová MD, DSc,Oliviero Bruni MDth end points labelled 1 and n has no cycle. Let s. and t. denote the numbers of simple graceful graphs and graceful trees on n vertices respectively. Then t.≦s.≦p(A.) where p(A.) is the permanent (plus determinant) of the (n-2)×(n-2) matrix A.=(a.) defined by: . More specifically, let c. denote the
30#
發(fā)表于 2025-3-26 19:57:06 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 09:28
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
扎兰屯市| 濮阳市| 富源县| 兴和县| 太保市| 通州市| 大名县| 奉化市| 晋中市| 墨竹工卡县| 余姚市| 揭东县| 平顺县| 达孜县| 明光市| 洛南县| 星子县| 阿瓦提县| 阳朔县| 罗城| 抚松县| 大埔县| 滦平县| 上犹县| 锦屏县| 竹山县| 蓬溪县| 探索| 柳河县| 武夷山市| 和田市| 左云县| 阜阳市| 将乐县| 博爱县| 新津县| 海安县| 中方县| 新野县| 页游| 金堂县|