找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Combinatorial Mathematics II; Proceedings of the S Derek A. Holton Conference proceedings 1974 Springer-Verlag Berlin Heidelberg 1974 Count

[復(fù)制鏈接]
樓主: 投降
21#
發(fā)表于 2025-3-25 04:37:02 | 只看該作者
Sum-free sets, difference sets and cyclotomy,e set T such that S?T?G, we have S = T..Here we determine some sum-free cyclotomic classes in finite fields and from them, we construct new supplementary difference sets, association schemes and block designs. We also continue our study of locally maximal sum-free sets in groups of small orders and
22#
發(fā)表于 2025-3-25 10:20:05 | 只看該作者
Williamson matrices of even order,ter are four (1,-1) matrices A,B,C,D, of order m, which pairwise satisfy (i) MN. = NM., M,N ε {A,B,C,D}, and (ii) AA.+BB.+CC.+DD. = 4mI., where I is the identity matrix. Currently Williamson matrices are known to exist for all orders less than 100 except: 35,39,47,53,59,65,67,70,71,73,76,77,83,89,94
23#
發(fā)表于 2025-3-25 14:42:17 | 只看該作者
24#
發(fā)表于 2025-3-25 16:01:51 | 只看該作者
25#
發(fā)表于 2025-3-25 21:41:08 | 只看該作者
Lecture Notes in Mechanical Engineering stability coefficient of G is . (G) = . (G)/|V(G)|. Making use of the above concepts, we characterise unions and joins of graphs which are semi-stable and enumerate trees with given stability index. Finally we investigate the problem of finding graphs with a given rational number as stability coefficient.
26#
發(fā)表于 2025-3-26 02:11:30 | 只看該作者
27#
發(fā)表于 2025-3-26 08:21:54 | 只看該作者
Shiyang Wang,Zhen Liu,Qingbo Herties of unique Moore-Penrose inverse of an arbitrary Boolean relation matrix are examined in connection with partial order relation and three computational methods for the unique Moore-Penrose inverse for an arbitrary Boolean relation matrix is developed.
28#
發(fā)表于 2025-3-26 11:00:48 | 只看該作者
29#
發(fā)表于 2025-3-26 16:20:21 | 只看該作者
30#
發(fā)表于 2025-3-26 20:10:25 | 只看該作者
https://doi.org/10.1007/978-94-009-0925-0ATP; DNA; Nucleotide; RNA; biochemistry; skeleton; transcription
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 07:30
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
区。| 阳高县| 依安县| 保亭| 南皮县| 兰西县| 太康县| 石阡县| 万宁市| 张家界市| 紫阳县| 宜兰市| 宾川县| 武安市| 循化| 丽水市| 津南区| 嘉黎县| 丁青县| 措美县| 苏尼特左旗| 富顺县| 石狮市| 高雄市| 山东省| 烟台市| 金阳县| 佳木斯市| 三江| 连江县| 井陉县| 邓州市| 晋州市| 延寿县| 新乡市| 华阴市| 湖口县| 六盘水市| 甘谷县| 静海县| 互助|