找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Combinatorial Enumeration of Groups, Graphs, and Chemical Compounds; G. Pólya,R. C. Read Textbook 1987 Springer-Verlag New York Inc. 1987

[復(fù)制鏈接]
樓主: Maculate
21#
發(fā)表于 2025-3-25 07:18:07 | 只看該作者
22#
發(fā)表于 2025-3-25 10:17:06 | 只看該作者
23#
發(fā)表于 2025-3-25 14:33:07 | 只看該作者
24#
發(fā)表于 2025-3-25 18:19:29 | 只看該作者
25#
發(fā)表于 2025-3-25 21:56:23 | 只看該作者
Introduction,e number of certain trees., Some of his problems lend themselves to chemical interpretation: the number of trees in question is equal to the number of certain (theoretically possible) chemical compounds.
26#
發(fā)表于 2025-3-26 03:09:53 | 只看該作者
Groups,d balls discussed in Sec. 2 have to be replaced by more complex objects, which we will call figures; on the other hand, the special permutation group of the octahedron rotations will have to be replaced by a more general permutation group.
27#
發(fā)表于 2025-3-26 04:58:24 | 只看該作者
Graphs,xposition I provide more than the bare essentials. I begin by repeating some known definitions in graph theory. Some problems touched upon in the Introduction are going to be presented “officially” later on. I will adhere as much as possible to the terminology used by D. K?nig in his elegant text..
28#
發(fā)表于 2025-3-26 11:54:30 | 只看該作者
Chemical Compounds,al) formula. Conditions I and II in Sec. 29 become meaningful in chemical terms. Every edge terminating in two endpoints means that there are no free valences. The connectedness of a graph indicates that all atoms are tied together into a molecule. The number of edges ending in the same vertex corre
29#
發(fā)表于 2025-3-26 14:19:56 | 只看該作者
30#
發(fā)表于 2025-3-26 18:53:56 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 00:03
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
民和| 玉林市| 拜城县| 游戏| 东乌珠穆沁旗| 博乐市| 彰化县| 乌拉特前旗| 特克斯县| 陆良县| 桓台县| 墨玉县| 新化县| 额济纳旗| 阿克| 宝清县| 罗定市| 永春县| 庐江县| 伊宁市| 杨浦区| 噶尔县| 大洼县| 咸宁市| 通辽市| 利津县| 怀集县| 迁西县| 岳西县| 九龙坡区| 阿拉善右旗| 台湾省| 天气| 元氏县| 长春市| 肇庆市| 武汉市| 平安县| 大兴区| 津南区| 石林|