找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Combinatorial Algorithms; 23rd International W S. Arumugam,W. F. Smyth Conference proceedings 2012 Springer-Verlag Berlin Heidelberg 2012 a

[復(fù)制鏈接]
樓主: 萬(wàn)能
11#
發(fā)表于 2025-3-23 10:31:00 | 只看該作者
12#
發(fā)表于 2025-3-23 16:45:01 | 只看該作者
On Graph Identification Problems and the Special Case of Identifying Vertices Using Paths,identifying path cover of size at most .. We also study the computational complexity of the associated optimization problem, in particular we show that when the length of the paths is asked to be of a fixed value, the problem is APX-complete.
13#
發(fā)表于 2025-3-23 18:35:36 | 只看該作者
14#
發(fā)表于 2025-3-23 23:45:35 | 只看該作者
Saving on Phases: Parameterized Approximation for Total Vertex Cover,rier can be overcome when we are only interested in approximate solutions. More specifically, we prove that a factor-1.5 approximative solution for . can be found in time ., where . is some bound on the optimum solution.
15#
發(fā)表于 2025-3-24 03:18:55 | 只看該作者
Approaches and Mathematical Models for Robust Solutions to Optimization Problems with Stochastic Prtion problem with a given problem data instance would become non-optimal and/or infeasible when applied to another data instance with even slight perturbation. We argue the fallacy of using solutions developed based on the mean values of data for real life problems having stochastic data.
16#
發(fā)表于 2025-3-24 08:49:34 | 只看該作者
17#
發(fā)表于 2025-3-24 13:04:45 | 只看該作者
18#
發(fā)表于 2025-3-24 15:32:07 | 只看該作者
https://doi.org/10.1007/978-3-642-50118-0at its unit balls tile the plane, as in the case of the ..-metric. We may view the hexagonal metric as an approximation of the Euclidean metric, and it arises in computational geometry. We show that the random process with the hexagonal metric does not lead to a unique isomorphism type.
19#
發(fā)表于 2025-3-24 22:17:04 | 只看該作者
20#
發(fā)表于 2025-3-24 23:34:16 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-23 23:47
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
临猗县| 衡东县| 攀枝花市| 开江县| 祁连县| 凤城市| 翁牛特旗| 海阳市| 合川市| 四会市| 象山县| 西宁市| 建宁县| 疏附县| 吉隆县| 临朐县| 江达县| 永城市| 嘉义县| 海南省| 贡山| 永春县| 出国| 西乡县| 靖西县| 天津市| 济阳县| 噶尔县| 盈江县| 濉溪县| 敖汉旗| 红原县| 安多县| 巴中市| 鲁甸县| 昂仁县| 岑巩县| 云龙县| 阿勒泰市| 阿尔山市| 罗山县|