找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Combinatorial Algebraic Geometry; Selected Papers From Gregory G. Smith,Bernd Sturmfels Book 2017 Springer Science+Business Media LLC 2017

[復(fù)制鏈接]
樓主: autoantibodies
41#
發(fā)表于 2025-3-28 17:49:16 | 只看該作者
42#
發(fā)表于 2025-3-28 20:20:45 | 只看該作者
From Curves to Tropical Jacobians and Back,calize the curve and then use the weighted metric graph to compute the tropical Jacobian. Finding the abstract tropicalization of a general curve defined by polynomial equations is difficult, because an embedded tropicalization may not be faithful, and there is no known algorithm for carrying out se
43#
發(fā)表于 2025-3-29 01:52:33 | 只看該作者
44#
發(fā)表于 2025-3-29 03:20:22 | 只看該作者
45#
發(fā)表于 2025-3-29 09:05:25 | 只看該作者
Secants, Bitangents, and Their Congruences, of all lines which intersect .. We compute the singular locus of this hypersurface, which contains the congruence of all secants to .. A surface . in . defines the Hurwitz hypersurface in . of all lines which are tangent to .. We show that its singular locus has two components for general enough .:
46#
發(fā)表于 2025-3-29 15:21:10 | 只看該作者
47#
發(fā)表于 2025-3-29 15:38:07 | 只看該作者
,Khovanskii Bases of Cox–Nagata Rings and Tropical Geometry,rms of these generators generate the initial algebra of this Cox ring. Sturmfels and Xu provide a classification in the case of degree 4 del Pezzo surfaces by subdividing the tropical Grassmannian .. After providing the necessary background on Cox–Nagata rings and Khovanskii bases, we review the cla
48#
發(fā)表于 2025-3-29 23:45:45 | 只看該作者
Equations and Tropicalization of Enriques Surfaces,mpute the tropical homology, thus recovering a special case of the result of [.], and establish a connection between the dimension of the tropical homology groups and the Hodge numbers of the corresponding algebraic Enriques surface.
49#
發(fā)表于 2025-3-30 01:47:27 | 只看該作者
50#
發(fā)表于 2025-3-30 08:06:16 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 03:50
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
福泉市| 镇赉县| 永宁县| 江北区| 方山县| 东港市| 邵东县| 新乡县| 惠东县| 高密市| 阳江市| 广宁县| 日照市| 广昌县| 长乐市| 克山县| 唐海县| 黎平县| 丰顺县| 东港市| 许昌县| 齐齐哈尔市| 永川市| 红安县| 交口县| 巫山县| 沂水县| 忻城县| 齐齐哈尔市| 霍林郭勒市| 云林县| 孟州市| 马关县| 平罗县| 石楼县| 溧水县| 若尔盖县| 常德市| 崇文区| 雷山县| 屏边|