找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪(fǎng)問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Combinatorial Algebraic Geometry; Levico Terme, Italy Aldo Conca,Sandra Di Rocco,Filippo Viviani Book 2014 Springer International Publishi

[復(fù)制鏈接]
樓主: Jefferson
11#
發(fā)表于 2025-3-23 12:21:42 | 只看該作者
12#
發(fā)表于 2025-3-23 15:38:22 | 只看該作者
13#
發(fā)表于 2025-3-23 21:20:00 | 只看該作者
14#
發(fā)表于 2025-3-24 01:19:52 | 只看該作者
Combinatorial Algebraic Geometry978-3-319-04870-3Series ISSN 0075-8434 Series E-ISSN 1617-9692
15#
發(fā)表于 2025-3-24 04:50:59 | 只看該作者
16#
發(fā)表于 2025-3-24 09:22:30 | 只看該作者
Ludivine Sinzelle,Nicolas Pollet. Their geometry and combinatorics have a fruitful interplay leading to fundamental insight in both directions. These notes will illustrate geometrical phenomena, in algebraic geometry and neighboring fields, which are characterized by a Cayley structure. Examples are projective duality of toric varieties and polyhedral adjunction theory.
17#
發(fā)表于 2025-3-24 12:32:40 | 只看該作者
Homologous Recombination in Mammalse. The aim of these notes is to present an introduction to this important class of manifolds, trying to survey the several different perspectives from which Hermitian symmetric manifolds can be studied.
18#
發(fā)表于 2025-3-24 18:47:32 | 只看該作者
19#
發(fā)表于 2025-3-24 22:14:31 | 只看該作者
Lilya Kopertekh,Joachim Schiemanno large, in fact, that subvarieties stable under those symmetry groups are defined by finitely many orbits of equations—whence the title .. It is not the purpose of these notes to give a systematic, exhaustive treatment of such varieties, but rather to discuss a few “personal favourites”: exciting e
20#
發(fā)表于 2025-3-25 02:03:41 | 只看該作者
Gene Site-Specific Insertion in Plantslosure is a topological invariant of that embedded projective variety, known as its maximum likelihood degree. We present an introduction to this theory and its statistical motivations. Many favorite objects from combinatorial algebraic geometry are featured: toric varieties, .-discriminants, hyperp
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 16:22
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
五河县| 同德县| 通江县| 嫩江县| 安康市| 阿瓦提县| 焦作市| 汝南县| 万源市| 宜昌市| 绥阳县| 剑河县| 兴城市| 三河市| 左贡县| 安阳县| 呼和浩特市| 万盛区| 葵青区| 平江县| 泽普县| 崇阳县| 阿拉善盟| 周至县| 平邑县| 米脂县| 灵璧县| 乌兰县| 刚察县| 白山市| 马鞍山市| 和田县| 东辽县| 旌德县| 崇仁县| 英德市| 曲靖市| 山东省| 竹山县| 年辖:市辖区| 西乡县|