找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Colloquium De Giorgi 2009; Umberto Zannier Conference proceedings 2012 Scuola Normale Superiore Pisa 2012

[復(fù)制鏈接]
樓主: Clientele
11#
發(fā)表于 2025-3-23 13:46:56 | 只看該作者
Classical analysis and nilpotent Lie groups,groups and for a class of Riemannian manifolds closely related to a nilpotent Lie group structure. There are also some infinite dimensional analogs but I won’t go into that here. The analytic ideas are not so different from the classical Fourier transform and Fourier inversion theories in one real variable.
12#
發(fā)表于 2025-3-23 15:58:19 | 只看該作者
Colloquium De Giorgi 2009978-88-7642-387-1Series ISSN 2239-1460 Series E-ISSN 2532-1668
13#
發(fā)表于 2025-3-23 19:25:16 | 只看該作者
Erratum to: Blockverbindungen und Sperren,gebra .(.) and the Fourier-Stieltjes algebra .(.), which reflect the representation theory of the group. The question of whether these determine the group has been considered by many authors. Here we show that when 1 < . < ∞, the Figà-Talamanca-Herz algebras ..(.) determine the group ., at least if . is a connected Lie group.
14#
發(fā)表于 2025-3-24 00:08:56 | 只看該作者
15#
發(fā)表于 2025-3-24 03:32:56 | 只看該作者
,Isomorphisms of the Figà-Talamanca-Herz algebras ,,(,) for connected Lie groups ,,gebra .(.) and the Fourier-Stieltjes algebra .(.), which reflect the representation theory of the group. The question of whether these determine the group has been considered by many authors. Here we show that when 1 < . < ∞, the Figà-Talamanca-Herz algebras ..(.) determine the group ., at least if
16#
發(fā)表于 2025-3-24 06:50:29 | 只看該作者
Classical analysis and nilpotent Lie groups,groups and for a class of Riemannian manifolds closely related to a nilpotent Lie group structure. There are also some infinite dimensional analogs but I won’t go into that here. The analytic ideas are not so different from the classical Fourier transform and Fourier inversion theories in one real v
17#
發(fā)表于 2025-3-24 12:24:02 | 只看該作者
,Leibniz’ conjecture, periods & motives, historical introduction to periods with the aim to demonstrate how a very nice and deep theory evolved during 3 centuries with three themes: numbers (Euler, Leibniz, Hermite, Lindemann, Siegel, Gelfond, Schneider, Baker), Hodge theory (Hodge, De Rham, Grothendieck, Griffiths, Deligne) and motives (
18#
發(fā)表于 2025-3-24 18:45:20 | 只看該作者
19#
發(fā)表于 2025-3-24 21:05:29 | 只看該作者
,Leibniz’ conjecture, periods & motives,Deligne, Nori). One of our main intends is to discuss then how to possibly bring these themes together and to show how modern transcendence theory can solve questions which arise at the interfaces between number theory, global analysis, algebraic geometry and arithmetic algebraic geometry.
20#
發(fā)表于 2025-3-25 01:38:15 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 14:37
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
察隅县| 金门县| 刚察县| 吉林市| 盱眙县| 鄂伦春自治旗| 比如县| 澎湖县| 丹巴县| 吉林省| 保亭| 祁阳县| 阳江市| 朝阳区| 平舆县| 海晏县| 嵊州市| 柳林县| 高要市| 博野县| 来宾市| 长宁区| 镇原县| 米易县| 离岛区| 中卫市| 铅山县| 天津市| 广宗县| 龙岩市| 略阳县| 克拉玛依市| 古丈县| 望谟县| 蛟河市| 兰西县| 刚察县| 建宁县| 宁晋县| 莲花县| 东安县|