找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Colloquium De Giorgi 2009; Umberto Zannier Conference proceedings 2012 Scuola Normale Superiore Pisa 2012

[復(fù)制鏈接]
樓主: Clientele
11#
發(fā)表于 2025-3-23 13:46:56 | 只看該作者
Classical analysis and nilpotent Lie groups,groups and for a class of Riemannian manifolds closely related to a nilpotent Lie group structure. There are also some infinite dimensional analogs but I won’t go into that here. The analytic ideas are not so different from the classical Fourier transform and Fourier inversion theories in one real variable.
12#
發(fā)表于 2025-3-23 15:58:19 | 只看該作者
Colloquium De Giorgi 2009978-88-7642-387-1Series ISSN 2239-1460 Series E-ISSN 2532-1668
13#
發(fā)表于 2025-3-23 19:25:16 | 只看該作者
Erratum to: Blockverbindungen und Sperren,gebra .(.) and the Fourier-Stieltjes algebra .(.), which reflect the representation theory of the group. The question of whether these determine the group has been considered by many authors. Here we show that when 1 < . < ∞, the Figà-Talamanca-Herz algebras ..(.) determine the group ., at least if . is a connected Lie group.
14#
發(fā)表于 2025-3-24 00:08:56 | 只看該作者
15#
發(fā)表于 2025-3-24 03:32:56 | 只看該作者
,Isomorphisms of the Figà-Talamanca-Herz algebras ,,(,) for connected Lie groups ,,gebra .(.) and the Fourier-Stieltjes algebra .(.), which reflect the representation theory of the group. The question of whether these determine the group has been considered by many authors. Here we show that when 1 < . < ∞, the Figà-Talamanca-Herz algebras ..(.) determine the group ., at least if
16#
發(fā)表于 2025-3-24 06:50:29 | 只看該作者
Classical analysis and nilpotent Lie groups,groups and for a class of Riemannian manifolds closely related to a nilpotent Lie group structure. There are also some infinite dimensional analogs but I won’t go into that here. The analytic ideas are not so different from the classical Fourier transform and Fourier inversion theories in one real v
17#
發(fā)表于 2025-3-24 12:24:02 | 只看該作者
,Leibniz’ conjecture, periods & motives, historical introduction to periods with the aim to demonstrate how a very nice and deep theory evolved during 3 centuries with three themes: numbers (Euler, Leibniz, Hermite, Lindemann, Siegel, Gelfond, Schneider, Baker), Hodge theory (Hodge, De Rham, Grothendieck, Griffiths, Deligne) and motives (
18#
發(fā)表于 2025-3-24 18:45:20 | 只看該作者
19#
發(fā)表于 2025-3-24 21:05:29 | 只看該作者
,Leibniz’ conjecture, periods & motives,Deligne, Nori). One of our main intends is to discuss then how to possibly bring these themes together and to show how modern transcendence theory can solve questions which arise at the interfaces between number theory, global analysis, algebraic geometry and arithmetic algebraic geometry.
20#
發(fā)表于 2025-3-25 01:38:15 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 16:11
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
威远县| 丰顺县| 峨边| 长春市| 东辽县| 龙州县| 荔波县| 乡城县| 霍邱县| 遂川县| 蓬安县| 南郑县| 衡水市| 东阳市| 九台市| 泗阳县| 新绛县| 伊通| 牙克石市| 玉门市| 长海县| 南靖县| 桂东县| 陕西省| 聂拉木县| 阿鲁科尔沁旗| 南宫市| 徐州市| 利川市| 怀安县| 柯坪县| 含山县| 余庆县| 佛冈县| 青铜峡市| 东港市| 济宁市| 如皋市| 青田县| 武冈市| 思茅市|