找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Cohomology of Number Fields; Jürgen Neukirch,Alexander Schmidt,Kay Wingberg Book 2008Latest edition The Editor(s) (if applicable) and The

[復(fù)制鏈接]
樓主: Hypothesis
11#
發(fā)表于 2025-3-23 11:44:56 | 只看該作者
The Absolute Galois Group of a Global Fieldfew conceptual results. For example, there is a famous conjecture due to . which asserts that the subgroup .. of .. is a free profinite group, where .(.) is the field obtained from . by adjoining all roots of unity. This was proved by . [171] for function fields, but the conjecture is open in the number field case.
12#
發(fā)表于 2025-3-23 14:05:35 | 只看該作者
13#
發(fā)表于 2025-3-23 20:17:54 | 只看該作者
Iwasawa Theory of Number Fieldsoring with ., one obtains a .-vector space of dimension 2., where . is the genus of .. The characteristic polynomial with respect to the endomorphism .. is the essential part of the .-function of the curve ..
14#
發(fā)表于 2025-3-24 01:25:55 | 只看該作者
15#
發(fā)表于 2025-3-24 04:56:03 | 只看該作者
16#
發(fā)表于 2025-3-24 06:34:41 | 只看該作者
17#
發(fā)表于 2025-3-24 12:06:04 | 只看該作者
18#
發(fā)表于 2025-3-24 17:17:07 | 只看該作者
Justin Wong MD, FRCPC,Anand Kumar MD, FRCPCThe Iwasawa algebra, usually denoted by the Greek letter Λ, is the complete group algebra . of a group Γ, which is . isomorphic to .. This means that we will not specify a particular isomorphism . or, equivalently, we will not fix a topological generator . of the procyclic group Γ.
19#
發(fā)表于 2025-3-24 20:52:03 | 只看該作者
Ian Nesbitt MBBS(Hons), FRCA, DICM(UK)Having established the cohomology theory for local fields, we now begin its development for global fields, i.e. algebraic number fields and function fields in one variable over a finite field. The cohomology theory treats both types of fields equally.
20#
發(fā)表于 2025-3-25 02:25:12 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 19:31
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
庄河市| 昂仁县| 通化市| 信阳市| 双牌县| 西藏| 新宁县| 海宁市| 雷山县| 石楼县| 阿城市| 涪陵区| 普洱| 防城港市| 米易县| 楚雄市| 辽阳市| 化州市| 廊坊市| 万源市| 堆龙德庆县| 白水县| 蒲城县| 甘洛县| 宾阳县| 巫山县| 信阳市| 平塘县| 大英县| 元氏县| 仁化县| 双流县| 金华市| 大安市| 和静县| 策勒县| 恩平市| 岗巴县| 红桥区| 湖口县| 屯门区|