找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Cohomology Theory of Topological Transformation Groups; Wu Yi Hsiang Book 1975 Springer-Verlag Berlin Heidelberg 1975 Cohomology.Kohomolog

[復(fù)制鏈接]
樓主: 預(yù)兆前
21#
發(fā)表于 2025-3-25 04:09:34 | 只看該作者
22#
發(fā)表于 2025-3-25 09:18:01 | 只看該作者
23#
發(fā)表于 2025-3-25 12:02:09 | 只看該作者
The Orbit Structure of a ,-Space , and the Ideal Theoretical Invariants of ,(,),eometric structures of a given .. Hence, it is almost imperative to investigate how much of the orbit structure of a given .-space . can actually be determined from the algebraic structure of its equivariant cohomology .(.). To be more precise, let us formulate a few more specific problems as examples:
24#
發(fā)表于 2025-3-25 16:22:36 | 只看該作者
Structural and Classification Theory of Compact Lie Groups and Their Representations,tforward than the usual Lie-algebra-theoretical approach. Furthermore, such an approach will also provide us with valuable examples and insight for later investigation of topological transformation groups.
25#
發(fā)表于 2025-3-25 20:20:41 | 只看該作者
The Splitting Theorems and the Geometric Weight System of Topological Transformation Groups on Cohovide abundant interesting examples that we shall again call them “.”. In other words, projective spaces, endowed with a simple cohomology structure and an abundance of transformation groups, provide the ideal setting for the study of the cohomology theory of transformation groups.
26#
發(fā)表于 2025-3-26 00:28:50 | 只看該作者
Le emozioni per lo storico medicoesult for the other case will follow automatically. In this chapter, we prefer to state the results for the case of acyclic cohomology manifolds because it is the directly applicable to the study of the local theory.
27#
發(fā)表于 2025-3-26 05:57:06 | 只看該作者
The Splitting Principle and the Geometric Weight System of Topological Transformation Groups on Acyesult for the other case will follow automatically. In this chapter, we prefer to state the results for the case of acyclic cohomology manifolds because it is the directly applicable to the study of the local theory.
28#
發(fā)表于 2025-3-26 11:47:05 | 只看該作者
29#
發(fā)表于 2025-3-26 15:25:56 | 只看該作者
30#
發(fā)表于 2025-3-26 20:30:58 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 15:21
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
朔州市| 罗田县| 乌鲁木齐市| 宜君县| 颍上县| 广南县| 普定县| 保山市| 湖口县| 盐亭县| 辉南县| 比如县| 长汀县| 凤山市| 嘉义县| 上思县| 营口市| 彝良县| 商河县| 连南| 洛隆县| 克拉玛依市| 双辽市| 弥渡县| 霸州市| 平远县| 龙井市| 丹江口市| 兴山县| 黎平县| 咸丰县| 漠河县| 西和县| 蓬溪县| 页游| 顺昌县| 乌兰察布市| 萨迦县| 石渠县| 包头市| 噶尔县|