找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Cohomological Theory of Dynamical Zeta Functions; Andreas Juhl Book 2001 Birkh?user Verlag 2001 Globale Analysis.differential equation.dyn

[復(fù)制鏈接]
樓主: 獨(dú)裁者
11#
發(fā)表于 2025-3-23 09:56:48 | 只看該作者
12#
發(fā)表于 2025-3-23 16:24:14 | 只看該作者
Divisors and Harmonic Currents,f the Ruelle zeta function . of the geodesic flow of a compact hyperbolic 4-manifold . in terms of harmonic currents on . The appropriate notion of harmonicity involves additional conditions along the leaves of P.
13#
發(fā)表于 2025-3-23 21:17:13 | 只看該作者
https://doi.org/10.1007/978-3-0348-8340-5Globale Analysis; differential equation; dynamische Systeme; harmonic analysis; measure
14#
發(fā)表于 2025-3-23 23:30:20 | 只看該作者
978-3-0348-9524-8Birkh?user Verlag 2001
15#
發(fā)表于 2025-3-24 02:54:35 | 只看該作者
https://doi.org/10.1007/978-1-4614-5511-0e (twisted) geodesic flows. The main motivation of the constructions discussed here is to find suitable frameworks for characterization of the divisors of the zeta functions..in terms of currents on.which are specified by.with respect to the foliations P.. Although we shall prove in Chapter 5 and Ch
16#
發(fā)表于 2025-3-24 07:17:19 | 只看該作者
17#
發(fā)表于 2025-3-24 11:41:53 | 只看該作者
18#
發(fā)表于 2025-3-24 17:44:55 | 只看該作者
https://doi.org/10.1007/978-1-4614-5511-0divisor of the Selberg zeta function of the a-twisted geodesic flow proved in Chapter 3 Section 3.3 is related to its characterizations in terms of a-twisted harmonic currents on . In the third section we prove some results on a-twisted globally harmonic currents which are . along the leaves of 0..
19#
發(fā)表于 2025-3-24 20:49:17 | 只看該作者
Progress in Mathematicshttp://image.papertrans.cn/c/image/229246.jpg
20#
發(fā)表于 2025-3-25 01:41:26 | 只看該作者
Statistics for Industry and TechnologyIn this chapter we discuss the motivations of the cohomological theory of the zeta functions and review the contents of the book.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-16 14:30
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
蓝山县| 鄄城县| 安泽县| 综艺| 潢川县| 广丰县| 固始县| 扶风县| 大宁县| 绵阳市| 界首市| 辽阳县| 清水县| 九寨沟县| 海南省| 池州市| 安多县| 广西| 壤塘县| 江源县| 南溪县| 博乐市| 新化县| 田阳县| 南投市| 治县。| 昌都县| 吉隆县| 巍山| 梁山县| 邻水| 从江县| 广安市| 岗巴县| 札达县| 玉溪市| 五指山市| 镇雄县| 岐山县| 三河市| 开封市|