找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Coherent States, Wavelets, and Their Generalizations; Syed Twareque Ali,Jean-Pierre Antoine,Jean-Pierre Book 2014Latest edition Springer

[復(fù)制鏈接]
樓主: Covenant
41#
發(fā)表于 2025-3-28 17:26:32 | 只看該作者
42#
發(fā)表于 2025-3-28 21:25:37 | 只看該作者
43#
發(fā)表于 2025-3-29 02:20:30 | 只看該作者
44#
發(fā)表于 2025-3-29 05:09:20 | 只看該作者
1864-5879 rious generalizations of wavelets with fully updated coverag.This second edition is fully updated, covering in particular new types of coherent states (the so-called Gazeau-Klauder coherent states, nonlinear coherent states, squeezed states, as used now routinely in quantum optics) and various gener
45#
發(fā)表于 2025-3-29 10:15:03 | 只看該作者
Sensorische Kurzaktivierung im Pflegealltagn-angle variables, which are then used to extend the theory to a non-holomorphic set-up, namely, the so-called Gazeau–Klauder CS. The latter in turn lead to probabilistic considerations, that will be the focus of Chap. 11.
46#
發(fā)表于 2025-3-29 14:25:43 | 只看該作者
https://doi.org/10.1007/978-3-211-89034-9 continuous semi-frames. We conclude the chapter by a thorough description of two interesting cases. First we treat CS on spheres constructed via heat kernels (such CS are not of the Gilmore–Perelomov type). Next we turn to CS on conformal classical domains, i.e., classical domains associated to the conformal group SO(., 2).
47#
發(fā)表于 2025-3-29 17:39:44 | 只看該作者
48#
發(fā)表于 2025-3-29 22:53:00 | 只看該作者
Friedrich Kiermeier,Ulrich Haevecker applications in image analysis, discussing its distinctive properties and some applications. Finally we describe in some detail a number of generalizations, such as multiselective wavelets, ridgelets, curvelets and shearlets.
49#
發(fā)表于 2025-3-30 02:32:45 | 只看該作者
https://doi.org/10.1007/978-3-642-18867-1g to . ordinary dilations on a tangent plane by an inverse stereographic projection. Next we describe briefly a number of techniques for obtaining discrete wavelets on .. Then we extend the analysis to wavelets on other manifolds, such as conic sections, a torus, general surfaces of revolution or graphs.
50#
發(fā)表于 2025-3-30 05:40:55 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 14:05
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
乌鲁木齐县| 泰顺县| 大城县| 汕头市| 定安县| 东海县| 成安县| 高碑店市| 钦州市| 林甸县| 宝丰县| 东港市| 大兴区| 宁德市| 洱源县| 虞城县| 西盟| 庐江县| 岑巩县| 土默特左旗| 岳西县| 西昌市| 安新县| 涡阳县| 清新县| 民丰县| 虹口区| 太康县| 东方市| 都江堰市| 朔州市| 保康县| 阳江市| 织金县| 建阳市| 竹山县| 安乡县| 贺州市| 廉江市| 中牟县| 邹城市|