找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪(fǎng)問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Coherent Sheaves, Superconnections, and Riemann-Roch-Grothendieck; Jean-Michel Bismut,Shu Shen,Zhaoting Wei Book 2023 The Editor(s) (if ap

[復(fù)制鏈接]
樓主: Opiate
11#
發(fā)表于 2025-3-23 12:53:38 | 只看該作者
Tommaso Polonelli,Michele MagnoWe describe the main results contained in the book. In particular, if . is a compact complex manifold, we outline the construction of the Chern character of coherent sheaves with values in Bott-Chern cohomology, we state the corresponding Riemann-Roch-Grothendieck theorem, and we give a sketch of the proof.
12#
發(fā)表于 2025-3-23 16:39:22 | 只看該作者
13#
發(fā)表于 2025-3-23 18:44:13 | 只看該作者
14#
發(fā)表于 2025-3-24 00:41:54 | 只看該作者
Francisco Martins,Luís Lopes,Hervé PaulinoWe recall elementary facts of linear algebra and differential geometry, in particular on connections on a real tangent bundle with nonzero torsion.
15#
發(fā)表于 2025-3-24 04:25:37 | 只看該作者
Dulce Domingos,Francisco Martins,Lara CaiolaWe recall the definition of the antiholomorphic superconnections of Block, and we study their functorial properties. We prove that the associated sheaf cohomology is coherent, and we show that the corresponding determinant is a holomorphic line bundle.
16#
發(fā)表于 2025-3-24 08:09:36 | 只看該作者
17#
發(fā)表于 2025-3-24 11:31:20 | 只看該作者
18#
發(fā)表于 2025-3-24 16:32:41 | 只看該作者
19#
發(fā)表于 2025-3-24 19:51:39 | 只看該作者
https://doi.org/10.1007/978-3-642-23583-2We establish the Riemann-Roch-Grothendieck theorem in the case of embeddings.
20#
發(fā)表于 2025-3-25 01:46:26 | 只看該作者
Hervé Paulino,Jo?o Ruivo SantosWe state the Riemann-Roch-Grothendieck theorem in the case of a projection .. Given metric data, we construct an infinite-dimensional antiholomorphic superconnection with fiberwise elliptic curvature, and we obtain corresponding Chern character forms on ., whose Bott-Chern class does not depend on the metrics.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 18:04
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
道真| 孙吴县| 平遥县| 江孜县| 夏邑县| 海原县| 元氏县| 汝阳县| 榆林市| 正阳县| 德惠市| 宜宾县| 桦南县| 濮阳市| 徐水县| 禹州市| 马龙县| 仪征市| 化州市| 乌拉特后旗| 四会市| 龙山县| 城市| 岢岚县| 黄冈市| 清水县| 手游| 巨鹿县| 本溪市| 蚌埠市| 湘潭县| 汕头市| 长沙县| 全椒县| 桐城市| 青浦区| 新建县| 玉林市| 利川市| 绥棱县| 五寨县|