找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Coding Theory and Design Theory; Part I Coding Theory Dijen Ray-Chaudhuri Conference proceedings 1990 Springer-Verlag New York, Inc. 1990 C

[復(fù)制鏈接]
樓主: 萬能
31#
發(fā)表于 2025-3-26 21:03:24 | 只看該作者
Self-Orthogonal Codes and the Topology of Spinor Groups,cribe the correspondence and discuss various techniques from the algebraic topology of Spin(n) which may be useful in studying self-orthogonal codes. In particular, Quillen’s results in equivariant cohomology theory coupled with some Morse theory may allow one to address certain questions on the minimum weight of doubly-even self-orthogonal codes.
32#
發(fā)表于 2025-3-27 03:28:50 | 只看該作者
33#
發(fā)表于 2025-3-27 07:29:13 | 只看該作者
34#
發(fā)表于 2025-3-27 11:13:35 | 只看該作者
Baer Subplanes, Ovals and Unitals,exploring further the notions that were introduced in [1]. There we defined the hull, ., of a design . over a finite field ., where . is a prime that divides the order . of the design: if . denotes the code of . over .., defined to be the space spanned by the characteristic functions of the blocks o
35#
發(fā)表于 2025-3-27 15:49:23 | 只看該作者
On the Length of Codes with a Given Covering Radius,st a code of codimension 11 and covering radius 2 which has length 64. We conclude with a table which gives the best available information for the length of a code with codimension . and covering radius . for 2 ≤ . ≤ 24 and 2 ≤ . ≤ 24.
36#
發(fā)表于 2025-3-27 21:29:08 | 只看該作者
37#
發(fā)表于 2025-3-27 22:30:10 | 只看該作者
38#
發(fā)表于 2025-3-28 02:33:45 | 只看該作者
Perfect Multiple Coverings in Metric Schemes,essary and sufficient condition is found to determine when a metric scheme admits a nontrivial perfect multiple covering. Results specific to the classical Hamming and Johnson schemes are given which bear out the relationship between .-designs, orthogonal arrays, and perfect multiple coverings.
39#
發(fā)表于 2025-3-28 09:22:21 | 只看該作者
40#
發(fā)表于 2025-3-28 10:38:43 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 01:14
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
祁东县| 漳浦县| 秭归县| 鱼台县| 安泽县| 高邮市| 波密县| 湘阴县| 祁阳县| 龙海市| 土默特左旗| 萨迦县| 郓城县| 稷山县| 保山市| 新乡县| 潼关县| 济阳县| 紫金县| 陈巴尔虎旗| 综艺| 东乡族自治县| 新泰市| 阜阳市| 岑巩县| 苍溪县| 平昌县| 同心县| 楚雄市| 炎陵县| 葵青区| 成武县| 弥勒县| 隆安县| 太康县| 六安市| 陇川县| 将乐县| 佛教| 淮安市| 益阳市|