找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Coding Theory and Applications; 2nd International Ca ángela Barbero Conference proceedings 2008 Springer-Verlag Berlin Heidelberg 2008 Alge

[復(fù)制鏈接]
樓主: Gullet
51#
發(fā)表于 2025-3-30 10:29:47 | 只看該作者
On the Kronecker Product Construction of Completely Transitive ,-Ary Codes,For any integer .?≥?1 and for any prime power ., the explicit construction of an infinite family of completely transitive (and completely regular) .-ary codes with minimum distance .?=?3 and with covering radius . is given.
52#
發(fā)表于 2025-3-30 14:52:51 | 只看該作者
53#
發(fā)表于 2025-3-30 17:25:27 | 只看該作者
Lecture Notes in Computer Sciencehttp://image.papertrans.cn/c/image/228892.jpg
54#
發(fā)表于 2025-3-30 22:03:27 | 只看該作者
M. Guala,K. T. Christensen,R. J. Adrianof the notion of completely regular codes, given by Delsarte [3]. This problem of existence of such structures is closely related to Delsarte hypothesis about the nonexistence of nontrivial perfect codes in Johnson graphs, the problem of existence of block schemes, the problem of existence of comple
55#
發(fā)表于 2025-3-31 04:00:55 | 只看該作者
56#
發(fā)表于 2025-3-31 08:14:31 | 只看該作者
57#
發(fā)表于 2025-3-31 09:37:19 | 只看該作者
58#
發(fā)表于 2025-3-31 17:03:27 | 只看該作者
https://doi.org/10.1007/978-94-011-4930-3esent two results that show different applications of algebraic methods in coding theory. One of them refers to the classical context and another one to the quantum error correcting theory. These results can be found in [5] and [13] respectively, where proofs and more details can be found.
59#
發(fā)表于 2025-3-31 18:33:07 | 只看該作者
F. Watchorn,G. J. Nichols,D. W. J. Bosenceistortions have upon the Kolmogorov complexity and the clustering by compression technique (the latter based on Normalized Compression Distance, NCD). We show how to decrease the complexity of the considered books introducing several modifications in them. We measure how the information contained in
60#
發(fā)表于 2025-4-1 01:39:15 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 19:17
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
乡宁县| 芦山县| 琼结县| 阳高县| 岳普湖县| 临夏县| 夹江县| 鹿泉市| 介休市| 泸州市| 通化县| 辰溪县| 石屏县| 宜都市| 靖边县| 泸西县| 色达县| 三台县| 彭泽县| 庆云县| 竹北市| 手游| 同江市| 温泉县| 瑞安市| 北海市| 静海县| 涟水县| 嵊州市| 紫云| 绥中县| 安平县| 德清县| 循化| 周口市| 万州区| 汉源县| 中阳县| 香河县| 邮箱| 阿尔山市|