找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Coalgebraic Methods in Computer Science; 11th International W Dirk Pattinson,Lutz Schr?der Conference proceedings 2012 IFIP International F

[復(fù)制鏈接]
樓主: estrange
21#
發(fā)表于 2025-3-25 04:12:41 | 只看該作者
22#
發(fā)表于 2025-3-25 07:51:24 | 只看該作者
23#
發(fā)表于 2025-3-25 15:14:08 | 只看該作者
24#
發(fā)表于 2025-3-25 17:22:42 | 只看該作者
25#
發(fā)表于 2025-3-25 20:32:47 | 只看該作者
Defining Context-Free Power Series Coalgebraically,braic approach provides a unified view on many, at first sight different, existing notions of algebraicity, and we apply our behavioural differential equations to produce a new proof for a classical result by Chomsky and Schützenberger, and a simple proof that the zip-operator of two algebraic streams is algebraic.
26#
發(fā)表于 2025-3-26 01:24:52 | 只看該作者
Internal Models for Coalgebraic Modal Logics,s for a modal logic. These are constructed from syntax, and yield a generalised notion of canonical model. Further, expressivity of a modal logic is shown to be characterised by factorisation of its models via internal models and the existence of cospans of internal models.
27#
發(fā)表于 2025-3-26 07:34:08 | 只看該作者
28#
發(fā)表于 2025-3-26 11:43:00 | 只看該作者
29#
發(fā)表于 2025-3-26 13:05:33 | 只看該作者
Defining Context-Free Power Series Coalgebraically,braic approach provides a unified view on many, at first sight different, existing notions of algebraicity, and we apply our behavioural differential equations to produce a new proof for a classical result by Chomsky and Schützenberger, and a simple proof that the zip-operator of two algebraic strea
30#
發(fā)表于 2025-3-26 17:01:22 | 只看該作者
Structural Operational Semantics for Continuous State Probabilistic Processes,antics of these systems can be defined as algebras and coalgebras of suitable endofunctors over ., the category of measurable spaces. In order to give a more concrete representation for these coalgebras, we present an SOS-like rule format which induces an abstract GSOS over .; this format is proved
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 19:56
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
巴南区| 永川市| 金溪县| 卓资县| 明星| 江油市| 青龙| 梁山县| 绿春县| 即墨市| 民县| 浮山县| 施甸县| 安丘市| 南和县| 筠连县| 马鞍山市| 丰台区| 治县。| 东港市| 和平县| 莱芜市| 无为县| 张家界市| 嘉兴市| 府谷县| 顺义区| 乌拉特后旗| 元阳县| 万盛区| 信阳市| 峨眉山市| 沈阳市| 云霄县| 运城市| 临泉县| 阿拉善盟| 高邑县| 宁海县| 读书| 大连市|