找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Coalgebraic Methods in Computer Science; 11th International W Dirk Pattinson,Lutz Schr?der Conference proceedings 2012 IFIP International F

[復制鏈接]
樓主: estrange
21#
發(fā)表于 2025-3-25 04:12:41 | 只看該作者
22#
發(fā)表于 2025-3-25 07:51:24 | 只看該作者
23#
發(fā)表于 2025-3-25 15:14:08 | 只看該作者
24#
發(fā)表于 2025-3-25 17:22:42 | 只看該作者
25#
發(fā)表于 2025-3-25 20:32:47 | 只看該作者
Defining Context-Free Power Series Coalgebraically,braic approach provides a unified view on many, at first sight different, existing notions of algebraicity, and we apply our behavioural differential equations to produce a new proof for a classical result by Chomsky and Schützenberger, and a simple proof that the zip-operator of two algebraic streams is algebraic.
26#
發(fā)表于 2025-3-26 01:24:52 | 只看該作者
Internal Models for Coalgebraic Modal Logics,s for a modal logic. These are constructed from syntax, and yield a generalised notion of canonical model. Further, expressivity of a modal logic is shown to be characterised by factorisation of its models via internal models and the existence of cospans of internal models.
27#
發(fā)表于 2025-3-26 07:34:08 | 只看該作者
28#
發(fā)表于 2025-3-26 11:43:00 | 只看該作者
29#
發(fā)表于 2025-3-26 13:05:33 | 只看該作者
Defining Context-Free Power Series Coalgebraically,braic approach provides a unified view on many, at first sight different, existing notions of algebraicity, and we apply our behavioural differential equations to produce a new proof for a classical result by Chomsky and Schützenberger, and a simple proof that the zip-operator of two algebraic strea
30#
發(fā)表于 2025-3-26 17:01:22 | 只看該作者
Structural Operational Semantics for Continuous State Probabilistic Processes,antics of these systems can be defined as algebras and coalgebras of suitable endofunctors over ., the category of measurable spaces. In order to give a more concrete representation for these coalgebras, we present an SOS-like rule format which induces an abstract GSOS over .; this format is proved
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-14 02:03
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
罗城| 凌海市| 佳木斯市| 宜兰县| 宁城县| 长治市| 广宁县| 合肥市| 澳门| 临颍县| 安吉县| 石楼县| 兰溪市| 大埔县| 边坝县| 元朗区| 安塞县| 绥中县| 丁青县| 盐亭县| 定襄县| 明光市| 苏尼特右旗| 滦南县| 日喀则市| 奉新县| 渝北区| 隆尧县| 嘉义市| 德庆县| 康平县| 页游| 新宁县| 阆中市| 恩平市| 陕西省| 徐水县| 嘉兴市| 靖江市| 礼泉县| 金沙县|