找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Clustering Methods for Big Data Analytics; Techniques, Toolboxe Olfa Nasraoui,Chiheb-Eddine Ben N‘Cir Book 2019 Springer Nature Switzerland

[復(fù)制鏈接]
樓主: 空格
21#
發(fā)表于 2025-3-25 07:06:29 | 只看該作者
22#
發(fā)表于 2025-3-25 08:22:01 | 只看該作者
Clustering Blockchain Data,of these datasets has diverse applications, such as detecting fraud and illegal transactions, characterizing major services, identifying financial hotspots, and characterizing usage and performance characteristics of large peer-to-peer consensus-based systems. Unsupervised learning methods in genera
23#
發(fā)表于 2025-3-25 11:40:13 | 只看該作者
An Introduction to Deep Clustering,ing classification tasks which are considered supervised learning. Deep learning has also been widely used to learn richer and better data representations from big data, without relying too much on human engineered features. Even though it started mostly within the realm of supervised learning, deep
24#
發(fā)表于 2025-3-25 16:20:22 | 只看該作者
Spark-Based Design of Clustering Using Particle Swarm Optimization,effective solution for Big data. However, MapReduce is unsuitable for iterative algorithms since it requires repeated times of reading and writing to disks. In addition, PSO suffers from a low convergence speed when it approaches the global optimum region. To deal with these issues, we propose in th
25#
發(fā)表于 2025-3-25 20:01:57 | 只看該作者
Data Stream Clustering for Real-Time Anomaly Detection: An Application to Insider Threats,rs. The continuous streaming of unbounded data coming from various sources in an organisation, typically in a high velocity, leads to a typical Big Data computational problem. The malicious insider threat refers to anomalous behaviour(s) (outliers) that deviate from the normal baseline of a data str
26#
發(fā)表于 2025-3-26 01:40:36 | 只看該作者
Effective Tensor-Based Data Clustering Through Sub-Tensor Impact Graphs,-based algorithms, most notably tensor decomposition, are becoming a core tool for data analysis and knowledge discovery, including clustering. Intuitively, tensor decomposition process generalizes matrix decomposition to high-dimensional arrays (known as tensors) and rewrites the given tensor in th
27#
發(fā)表于 2025-3-26 08:06:28 | 只看該作者
28#
發(fā)表于 2025-3-26 12:17:45 | 只看該作者
Clustering Blockchain Data,s tailored to the characteristics of such data. This chapter motivates the study of clustering methods for blockchain data, and introduces the key blockchain concepts from a data-centric perspective. It presents different models and methods used for clustering blockchain data, and describes the chal
29#
發(fā)表于 2025-3-26 16:38:20 | 只看該作者
30#
發(fā)表于 2025-3-26 18:33:04 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-27 06:04
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
阿巴嘎旗| 察哈| 张家界市| 嵩明县| 新密市| 嘉黎县| 大埔县| 龙江县| 商洛市| 阿拉善左旗| 赤壁市| 卓尼县| 治县。| 独山县| 阿鲁科尔沁旗| 东乡族自治县| 子长县| 剑河县| 灵武市| 伊宁县| 阿荣旗| 建平县| 江山市| 通许县| 日照市| 嘉祥县| 合江县| 乌鲁木齐县| 渑池县| 峡江县| 南平市| 湛江市| 梓潼县| 湖南省| 枣庄市| 昌乐县| 鞍山市| 玉龙| 治多县| 平邑县| 东乌珠穆沁旗|