找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Closure Properties for Heavy-Tailed and Related Distributions; An Overview Remigijus Leipus,Jonas ?iaulys,Dimitrios Konstanti Book 2023 The

[復制鏈接]
樓主: interleukins
11#
發(fā)表于 2025-3-23 09:58:21 | 只看該作者
Convolution-Root Closure,ons is caused by the inclusion of . to the same family. Such an implication is called a convolution-root closure. This chapter is devoted to the convolution-root closure properties for the distribution classes described in Chap. .. We determine the classes which are closed under convolution roots and which are not.
12#
發(fā)表于 2025-3-23 17:18:07 | 只看該作者
13#
發(fā)表于 2025-3-23 20:57:01 | 只看該作者
978-3-031-34552-4The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
14#
發(fā)表于 2025-3-23 22:38:39 | 只看該作者
Closure Properties for Heavy-Tailed and Related Distributions978-3-031-34553-1Series ISSN 2191-544X Series E-ISSN 2191-5458
15#
發(fā)表于 2025-3-24 06:02:51 | 只看該作者
Was verursacht Schizophrenien?,ons is caused by the inclusion of . to the same family. Such an implication is called a convolution-root closure. This chapter is devoted to the convolution-root closure properties for the distribution classes described in Chap. .. We determine the classes which are closed under convolution roots and which are not.
16#
發(fā)表于 2025-3-24 07:02:38 | 只看該作者
Remigijus Leipus,Jonas ?iaulys,Dimitrios KonstantiPresents a concise overview of closure properties of heavy-tailed and related distributions.Features several examples and counterexamples that provide an insight into the theory.Provides numerous refe
17#
發(fā)表于 2025-3-24 13:09:36 | 只看該作者
18#
發(fā)表于 2025-3-24 17:34:06 | 只看該作者
19#
發(fā)表于 2025-3-24 21:33:17 | 只看該作者
20#
發(fā)表于 2025-3-25 01:32:22 | 只看該作者
Zusammenfassende Schlussbemerkungen,s. In Sect. 3.3, we discuss the convolution closure properties in relation to the notion of max-sum equivalence. In further sections, we overview and discuss the closure properties of the heavy-tailed and related distributions, introduced in Chap. ., under strong/weak tail-equivalence, convolution,
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-20 00:56
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
罗平县| 乃东县| 河南省| 东乡族自治县| 额尔古纳市| 错那县| 高尔夫| 南溪县| 镇平县| 东港市| 凤山市| 泌阳县| 临城县| 分宜县| 陈巴尔虎旗| 苗栗市| 无为县| 滁州市| 宁都县| 密山市| 随州市| 红桥区| 景德镇市| 皋兰县| 长泰县| 潮州市| 山东| 繁峙县| 宁城县| 新民市| 金湖县| 保康县| 平果县| 河源市| 内江市| 深水埗区| 广灵县| 通化县| 淮北市| 溧阳市| 凌源市|