找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Clifford Analysis and Related Topics; In Honor of Paul A. Paula Cerejeiras,Craig A. Nolder,Carmen Judith Van Conference proceedings 2018 S

[復(fù)制鏈接]
樓主: PEL
21#
發(fā)表于 2025-3-25 04:52:25 | 只看該作者
Marilyn Mehlmann,Miriam Sannum,Andre Benaim spinor space is to be interpreted as an irreducible representation of the spin group. In this article we twist the Dirac operator by replacing the spinor space with an arbitrary irreducible representation of the spin group. In this way, the operator becomes highly reducible, whence we determine its full decomposition.
22#
發(fā)表于 2025-3-25 08:46:28 | 只看該作者
23#
發(fā)表于 2025-3-25 15:25:50 | 只看該作者
,Lambda-Harmonic Functions: An?Expository Account,mpiled a list of known properties for . when . and present analogous properties for .. We close by discussing the .Poisson kernel, the function that solves the Dirichlet problem on the closed ball in ..
24#
發(fā)表于 2025-3-25 17:36:36 | 只看該作者
Some Applications of Parabolic Dirac Operators to the Instationary Navier-Stokes Problem on Conformroblems on cylinders and tori. Solutions are represented in terms of integral operators involving explicit expressions for the Cauchy kernel that are associated to the parabolic Dirac operators acting on spinor sections of these manifolds.
25#
發(fā)表于 2025-3-25 20:29:16 | 只看該作者
,From Hermitean Clifford Analysis to?Subelliptic Dirac Operators on Odd Dimensional Spheres and Othex variables. We also show that the maximal subgroup that preserves these operators are generated by translations, dilations and actions of the unitary n-group. So the operators are not invariant under Kelvin inversion. We also show that the Dirac operators constructed via two by two matrices in Herm
26#
發(fā)表于 2025-3-26 00:09:33 | 只看該作者
On Some Conformally Invariant Operators in Euclidean Space,on to develop properties of some conformally invariant operators in the Rarita-Schwinger setting. We also study properties of some other Rarita-Schwinger type operators, for instance, twistor operators and dual twistor operators. This work is also intended as an attempt to motivate the study of Rari
27#
發(fā)表于 2025-3-26 08:21:43 | 只看該作者
28#
發(fā)表于 2025-3-26 08:28:16 | 只看該作者
29#
發(fā)表于 2025-3-26 13:37:30 | 只看該作者
30#
發(fā)表于 2025-3-26 20:48:57 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 12:41
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
崇文区| 山阴县| 尼玛县| 普定县| 车险| 曲周县| 眉山市| 海安县| 沽源县| 雅江县| 大田县| 西青区| 华亭县| 兰西县| 年辖:市辖区| 烟台市| 黄大仙区| 平安县| 上虞市| 合阳县| 上高县| 湟中县| 太仓市| 莱芜市| 思茅市| 宁武县| 嘉鱼县| 宜宾县| 焉耆| 甘德县| 莱芜市| 崇明县| 蓬溪县| 新竹市| 吴忠市| 大姚县| 姚安县| 绥阳县| 龙里县| 宕昌县| 沙田区|