找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Clifford Analysis and Its Applications; F. Brackx,J. S. R. Chisholm,V. Sou?ek Book 2001 Springer Science+Business Media Dordrecht 2001 Bou

[復制鏈接]
樓主: 從未迷惑
31#
發(fā)表于 2025-3-26 22:02:06 | 只看該作者
32#
發(fā)表于 2025-3-27 03:08:03 | 只看該作者
https://doi.org/10.1007/978-3-8349-6202-7lently, . . and . . belong to the . in complex spacetime, respectively. The space coordinates of . . and . . give the spatial orientations and radii of the dishes, while their time coordinates determine the . of the emission and reception processes. The .(y) of the communication process is a convex
33#
發(fā)表于 2025-3-27 07:23:59 | 只看該作者
An Introduction to Corporate Responsibilitye dimensional quantum mechanics. There, one degree of freedom is represented by a toroidal grid . . × . . i.e. classical phase space. The seeds of the “.-th order idea” may be traced back to Weierstrass [.] who considered possible commutative extensions of complex numbers to the case of arbitrary nu
34#
發(fā)表于 2025-3-27 13:17:12 | 只看該作者
35#
發(fā)表于 2025-3-27 15:58:49 | 只看該作者
36#
發(fā)表于 2025-3-27 18:14:49 | 只看該作者
37#
發(fā)表于 2025-3-28 00:32:56 | 只看該作者
https://doi.org/10.1007/978-981-19-3151-2We describe a program of computing identities in tensor-spinor calculus which are beyond the range of hand calculation, but are nevertheless worth knowing.
38#
發(fā)表于 2025-3-28 05:20:25 | 只看該作者
Designing a Responsible SolutionIn this paper we investigate the problem of existence of locally quasiconformal solutions of Beltrami equations for functions with values in a Clifford algebra, based on a characterization of a monogenic homeomorphism by its derivative.
39#
發(fā)表于 2025-3-28 07:44:17 | 只看該作者
40#
發(fā)表于 2025-3-28 11:23:57 | 只看該作者
Core Fields of the RLS FrameworkThis paper is an application of the method of weight graphs to the case of the quaternionic structure. The result is the BGG sequence of operators (regular and singular versions) containing all standard invariant operators.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-17 02:45
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
全椒县| 密山市| 宜昌市| 邵东县| 南平市| 阳城县| 吉隆县| 夏津县| 修水县| 云梦县| 宜城市| 五寨县| 原平市| 江北区| 建始县| 阳城县| 郁南县| 吉安市| 内江市| 永丰县| 宝清县| 青神县| 建始县| 宁晋县| 星子县| 阿拉善右旗| 饶阳县| 青冈县| 双城市| 即墨市| 固安县| 北海市| 略阳县| 桃园县| 乌鲁木齐县| 铜鼓县| 岢岚县| 大足县| 咸宁市| 嘉祥县| 华亭县|