找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Clifford Algebras and their Applications in Mathematical Physics; Volume 1: Algebra an Rafa? Ab?amowicz,Bertfried Fauser Book 2000 Springer

[復(fù)制鏈接]
樓主: 手鐲
11#
發(fā)表于 2025-3-23 09:51:14 | 只看該作者
12#
發(fā)表于 2025-3-23 15:48:57 | 只看該作者
13#
發(fā)表于 2025-3-23 18:10:40 | 只看該作者
https://doi.org/10.1007/978-3-319-55206-4ditional applications use only homogeneous elements (elements of a single grade) to model physical entities such as spacetime vectors in relativity and their transformations. Lower-dimensional realizations of the structures inherent in physical systems are sometimes afforded by exploiting mixed-grad
14#
發(fā)表于 2025-3-24 01:29:47 | 只看該作者
15#
發(fā)表于 2025-3-24 03:43:30 | 只看該作者
Rochelle Gladys Kemitare,Joshua Mugambwaich the ‘Pauli terms’ are formed. We find that these violate a basic axiom of any *-algebra when Dirac’s ψ is canonical. Then the Dirac operator is spanned only by the 10 elements 1, iγ5, γ., γ.γ5 (which don’t form a basis of .. because the σ. are excluded).
16#
發(fā)表于 2025-3-24 08:10:37 | 只看該作者
17#
發(fā)表于 2025-3-24 11:03:18 | 只看該作者
Pradnya Vishwas Chitrao,Suruchi Pandeyess particle with a non-vanishing helicity [1]. A relativistic extended phase space of a massive spinning charged particle [2, 3] may be regarded as “embedded” in a two twistor phase space [4, 5, 6] . which is simply . with its diagonal deleted (in the sense of a symplectic reduction). We describe a
18#
發(fā)表于 2025-3-24 18:30:45 | 只看該作者
19#
發(fā)表于 2025-3-24 20:29:09 | 只看該作者
20#
發(fā)表于 2025-3-25 00:37:09 | 只看該作者
https://doi.org/10.1007/978-3-319-41731-8 and the Pythagorean norm of the corresponding element . ∈ ?. are equal, ii) the “space” parts of . and . are proportional, and iii) the transformation properties of . are induced by those of .. With the aid of such a mapping, a new interpretation of the rest energy of a particle of special relativi
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-26 08:16
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
内丘县| 新平| 育儿| 霍林郭勒市| 沙雅县| 康马县| 丰镇市| 来宾市| 山西省| 苍山县| 司法| 灵山县| 禹州市| 桐乡市| 鞍山市| 道孚县| 祁阳县| 木兰县| 张掖市| 缙云县| 都匀市| 甘南县| 邵东县| 南和县| 桐乡市| 淮南市| 三门峡市| 那曲县| 南靖县| 红安县| 山东| 屏边| 溧阳市| 平顶山市| 来凤县| 绥宁县| 凤阳县| 定襄县| 全椒县| 连江县| 突泉县|