找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Clifford Algebras and their Applications in Mathematical Physics; Proceedings of the T F. Brackx,R. Delanghe,H. Serras Conference proceedin

[復(fù)制鏈接]
樓主: Prehypertension
41#
發(fā)表于 2025-3-28 16:11:33 | 只看該作者
42#
發(fā)表于 2025-3-28 20:03:58 | 只看該作者
43#
發(fā)表于 2025-3-28 23:53:52 | 只看該作者
44#
發(fā)表于 2025-3-29 03:58:55 | 只看該作者
Responsible Consumption and Sustainabilityaces ..(Γ, ?(C)), where Γ is the unit sphere ..(m = 1, 2,…) and ?(C)) is the algebra of complex quaternions. The investigation is based on the local-trajectory method for studying the invertibility of bounded linear operators with shifts in a Hilbert space.
45#
發(fā)表于 2025-3-29 07:37:30 | 只看該作者
Antonio Chamorro-Mera,Rafael Robina-Ramírez, can be expressed as a sum of products of polynomials and left and anti-left monogenic functions. Thereby, our key assumption is that Ω is special .-normal. As an application of this result, we show how the general solution of Stokes’ equations in three dimensions can be represented by two left mon
46#
發(fā)表于 2025-3-29 13:40:14 | 只看該作者
47#
發(fā)表于 2025-3-29 18:42:11 | 只看該作者
https://doi.org/10.1007/978-3-319-55206-4reby . is a Clifford algebra over the field of real numbers. Using a different from the usual one hypercomplex structure of .. we get by this way a natural generalization of the Cauchy approach to monogenic functions which seems to be not possible so far. Exemplary this concept applies to transfer i
48#
發(fā)表于 2025-3-29 23:05:50 | 只看該作者
C*-Algebras of Nonlocal Quaternionic Convolution Type Operatorsaces ..(Γ, ?(C)), where Γ is the unit sphere ..(m = 1, 2,…) and ?(C)) is the algebra of complex quaternions. The investigation is based on the local-trajectory method for studying the invertibility of bounded linear operators with shifts in a Hilbert space.
49#
發(fā)表于 2025-3-29 23:54:00 | 只看該作者
50#
發(fā)表于 2025-3-30 04:23:03 | 只看該作者
Aleksandra Machnik,Anna Królikowska-TomczakQuantum multiparameter deformation of real Clifford algebras is proposed. The corresponding irreducible representations are found.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-27 18:48
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
始兴县| 惠东县| 九台市| 日喀则市| 山阴县| 河东区| 靖边县| 个旧市| 延川县| 灌云县| 奉新县| 定边县| 阿拉善左旗| 察哈| 榆中县| 汾西县| 成武县| 肃南| 镇赉县| 新郑市| 门头沟区| 金溪县| 涿鹿县| 栾川县| 钟山县| 五家渠市| 湖州市| 东平县| 南召县| 广州市| 什邡市| 班玛县| 秀山| 中西区| 阳东县| 名山县| 安龙县| 冷水江市| 张家口市| 稻城县| 云阳县|