找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Clifford Algebras and their Applications in Mathematical Physics; Volume 2: Clifford A John Ryan,Wolfgang Spr??ig Book 2000 Springer Scienc

[復(fù)制鏈接]
樓主: incoherent
11#
發(fā)表于 2025-3-23 10:29:06 | 只看該作者
The Structure of Monogenic FunctionsWe study the structure of monogenic functions using symmetries of the Dirac operator.
12#
發(fā)表于 2025-3-23 17:01:33 | 只看該作者
13#
發(fā)表于 2025-3-23 20:11:03 | 只看該作者
14#
發(fā)表于 2025-3-23 23:33:40 | 只看該作者
15#
發(fā)表于 2025-3-24 05:13:36 | 只看該作者
16#
發(fā)表于 2025-3-24 09:01:57 | 只看該作者
17#
發(fā)表于 2025-3-24 11:18:38 | 只看該作者
The Democratic Republic of the Congoes with metrics of arbitrary signatures. In particular, we derive expressions for those isometry operators which correspond to coordinate parallelograms that can be continuously shrunk to zero. The isometry operators are expressed in terms of infinite series which are defined by two recursion relati
18#
發(fā)表于 2025-3-24 17:03:05 | 只看該作者
Palgrave Critical University Studiesodel of particle physics in a unified way. In this frame the fundamental objects are generalized Dirac operators, and the geometrical setup is that of a Clifford module bundle over an even dimensional closed Riemannian manifold.
19#
發(fā)表于 2025-3-24 20:16:10 | 只看該作者
Samantha Champagnie,Janis L. Gogan definition of the Schwarzian is not clear. In this paper, we introduce a “natural” generalization of the Schwarzian using the Clifford algebra and show that it vanishes exactly for M?bius transformations. The situation is simplest for non-singular transformations of the Euclidean space although the
20#
發(fā)表于 2025-3-25 02:38:49 | 只看該作者
Fred Niederman,Elizabeth White Bakerector functions . = .( .., .) + .( .) .( .., .), where . and . are real-valued. The equation . splits into two parts. One of them depends only on x.,.. This leads to a system of partial differential equations which coincides with the system defining hypermonogenic functions. These functions arise fo
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 05:28
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
灌南县| 逊克县| 郴州市| 德昌县| 滕州市| 璧山县| 永川市| 平远县| 于都县| 都匀市| 昭平县| 宽甸| 临夏市| 北海市| 潞城市| 永嘉县| 三亚市| 嘉定区| 康乐县| 读书| 阜城县| 沭阳县| 余江县| 沁水县| 颍上县| 河西区| 徐闻县| 雷波县| 石狮市| 河池市| 郸城县| 定边县| 古交市| 呼和浩特市| 扎鲁特旗| 安阳县| 梁河县| 永和县| 芜湖市| 随州市| 东辽县|