找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Clifford Algebras; Geometric Modelling Daniel Klawitter Book 2015 Springer Fachmedien Wiesbaden 2015 Cayley-Klein geometries.Clifford alge

[復(fù)制鏈接]
樓主: 公款
11#
發(fā)表于 2025-3-23 10:15:14 | 只看該作者
12#
發(fā)表于 2025-3-23 14:05:10 | 只看該作者
978-3-658-07617-7Springer Fachmedien Wiesbaden 2015
13#
發(fā)表于 2025-3-23 19:39:46 | 只看該作者
dean displacements Daniel Klawitter gives a comprehensive introduction into Clifford algebras. The Clifford algebra calculus is used to construct new models that allow descriptions of the group of projective transformations and inversions with respect to hyperquadrics. Afterwards, chain geometries o
14#
發(fā)表于 2025-3-23 22:22:15 | 只看該作者
15#
發(fā)表于 2025-3-24 05:17:13 | 只看該作者
16#
發(fā)表于 2025-3-24 07:50:40 | 只看該作者
17#
發(fā)表于 2025-3-24 10:52:17 | 只看該作者
Book 2015eory and the developed methods to the homogeneous Clifford algebra model corresponding to Euclidean geometry. Moreover, kinematic mappings for special Cayley-Klein geometries are developed. These mappings allow a description of existing kinematic mappings in a unifying framework.
18#
發(fā)表于 2025-3-24 17:31:13 | 只看該作者
Book 2015s. The Clifford algebra calculus is used to construct new models that allow descriptions of the group of projective transformations and inversions with respect to hyperquadrics. Afterwards, chain geometries over Clifford algebras and their subchain geometries are examined. The author applies this th
19#
發(fā)表于 2025-3-24 21:49:23 | 只看該作者
The Reasons of the Intellectualsaccomplished in detail for the Euclidean spaces of dimension two and three. After that, we give an overview of possible kinematic mappings for Cayley-Klein spaces of dimension two and three. Moreover, the mapping for the four-dimensional Euclidean space is presented. This chapter is already published, see [41].
20#
發(fā)表于 2025-3-25 00:13:04 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-2-1 13:12
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
华池县| 广元市| 扎鲁特旗| 托里县| 永嘉县| 洪泽县| 亚东县| 广昌县| 上犹县| 贡山| 炎陵县| 虎林市| 黄大仙区| 屯昌县| 延吉市| 海晏县| 邯郸县| 绥中县| 韶山市| 三穗县| 喀喇| 昆山市| 武隆县| 西和县| 灯塔市| 大足县| 宝坻区| 张家口市| 鹤峰县| 石河子市| 荃湾区| 河东区| 正镶白旗| 栖霞市| 正阳县| 深圳市| 丰都县| 醴陵市| 东乡县| 郯城县| 南阳市|