找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Clifford Algebra and Spinor-Valued Functions; A Function Theory fo R. Delanghe,F. Sommen,V. Sou?ek Book 1992 Springer Science+Business Medi

[復(fù)制鏈接]
樓主: informed
11#
發(fā)表于 2025-3-23 13:14:36 | 只看該作者
https://doi.org/10.1007/978-1-4614-7574-3After a comprehensive study of the properties of spinor-valued solutions to the Dirac equation, we extend this study to spinor-valued differential forms.
12#
發(fā)表于 2025-3-23 14:54:12 | 只看該作者
13#
發(fā)表于 2025-3-23 21:33:04 | 只看該作者
Clifford Algebras and Spinor Spaces,The aim of this chapter is to gather some basic results concerning real and complex Clifford algebras. All material covered is classical, exception made of the approach given in §§4.7 – 4.8 to the explicit realization of spinor space and a Hermitian structure on it.
14#
發(fā)表于 2025-3-24 01:03:25 | 只看該作者
Monogenic functions,This chapter is entirely devoted to fundamental concepts concerning nullsolutions of the Dirac operator.
15#
發(fā)表于 2025-3-24 05:42:33 | 只看該作者
16#
發(fā)表于 2025-3-24 09:27:36 | 只看該作者
Monogenic differential forms and residues,After a comprehensive study of the properties of spinor-valued solutions to the Dirac equation, we extend this study to spinor-valued differential forms.
17#
發(fā)表于 2025-3-24 11:30:14 | 只看該作者
Haematopoietic Syndrome in Pigs,presented as a 1-1 map between holomorphic solutions of the massless field equation on a domain in the complexified Minkowski space and certain cohomology groups on the corresponding region in the twistor space (see [27]). A systematic description of the Penrose transform in this setting can be found in the book by Ward and Wells ([88]).
18#
發(fā)表于 2025-3-24 15:27:15 | 只看該作者
Clifford analysis and the Penrose transform,presented as a 1-1 map between holomorphic solutions of the massless field equation on a domain in the complexified Minkowski space and certain cohomology groups on the corresponding region in the twistor space (see [27]). A systematic description of the Penrose transform in this setting can be found in the book by Ward and Wells ([88]).
19#
發(fā)表于 2025-3-24 20:50:57 | 只看該作者
6樓
20#
發(fā)表于 2025-3-25 00:45:04 | 只看該作者
6樓
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 04:58
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
堆龙德庆县| 浪卡子县| 金阳县| 东兰县| 沛县| 铁力市| 长沙县| 通海县| 仙居县| 镇巴县| 崇仁县| 甘德县| 湖北省| 琼海市| 东海县| 南江县| 固阳县| 合川市| 嵊州市| 潞西市| 乌兰察布市| 依兰县| 永新县| 惠水县| 介休市| 揭西县| 马尔康县| 太保市| 淳安县| 鹤山市| 都江堰市| 怀柔区| 探索| 宜宾市| 富平县| 府谷县| 清涧县| 镇康县| 米脂县| 潼关县| 交口县|