找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Clifford (Geometric) Algebras; with applications to William E. Baylis Conference proceedings 1996 Birkh?user Boston 1996 Albert Einstein.Ph

[復(fù)制鏈接]
樓主: SORB
21#
發(fā)表于 2025-3-25 06:46:15 | 只看該作者
22#
發(fā)表于 2025-3-25 08:15:55 | 只看該作者
https://doi.org/10.1057/9781137409546of the line element, . The quantity . is derived from the .-function via .where the {e.} are a coordinate frame. Hence, in forming ., all reference to the rotation gauge is lost — GR deals solely with quantities which transform as scalars under rotation-gauge transformations.
23#
發(fā)表于 2025-3-25 11:51:38 | 只看該作者
https://doi.org/10.1007/978-3-030-59463-3 vector products, representing surfaces and higher-dimensional objects, allow simple but rigorous descriptions of rotations, reflections, and other geometric transformations. The name Clifford algebra honors the English mathematician William Kingdon Clifford (1845–79), who recognized the importance
24#
發(fā)表于 2025-3-25 17:51:05 | 只看該作者
Non-Governmental Organizations,uation and the bilinear covariants are discussed. The Fierz identities are sufficient to reconstruct a Dirac spinor from its bilinear covariants, up to a phase. However, the Weyl and Majorana spinors cannot be reconstructed using the Fierz identities alone. This paper introduces a new concept, the b
25#
發(fā)表于 2025-3-25 21:50:17 | 只看該作者
26#
發(fā)表于 2025-3-26 01:01:04 | 只看該作者
27#
發(fā)表于 2025-3-26 08:02:03 | 只看該作者
Kristi Govella,Vinod K. Aggarwalnsions, their generalization to higher dimensions being self-evident. A discussion of some of the basic ideas of Riemannian geometry is included. The reader may wish to refer to [15] and [6] for more details and more general proofs.
28#
發(fā)表于 2025-3-26 11:44:49 | 只看該作者
29#
發(fā)表于 2025-3-26 15:02:00 | 只看該作者
30#
發(fā)表于 2025-3-26 20:50:50 | 只看該作者
https://doi.org/10.1007/978-1-4899-1013-4e usually find that some fresh insight is obtained, often on old questions. The oldest question of 20th century physics is the interpretation of quantum mechanics, and in this lecture we aim to discuss some of the light that an STA approach can throw upon this issue. This will be undertaken in the c
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 16:21
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
富民县| 萍乡市| 武汉市| 大化| 五莲县| 镶黄旗| 祁阳县| 丘北县| 朝阳市| 于田县| 县级市| 廊坊市| 石渠县| 壶关县| 文安县| 汉寿县| 集贤县| 楚雄市| 海安县| 石屏县| 柳林县| 卫辉市| 察隅县| 开化县| 龙陵县| 垣曲县| 洞头县| 长沙市| 安塞县| 巴里| 宜章县| 腾冲县| 伊吾县| 淳安县| 西峡县| 东兴市| 改则县| 天津市| 漳浦县| 石首市| 松溪县|