找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Classical, Semiclassical and Quantum Dynamics in Atoms; Harald Friedrich,Bruno Eckhardt Conference proceedings 1997 Springer-Verlag Berlin

[復(fù)制鏈接]
樓主: 無緣無故
31#
發(fā)表于 2025-3-26 22:49:31 | 只看該作者
32#
發(fā)表于 2025-3-27 05:12:12 | 只看該作者
33#
發(fā)表于 2025-3-27 05:57:26 | 只看該作者
Classical orbits and quantum waves in natural atoms and in designer atoms,bsorption spectra of atoms in electric or magnetic fields. Interference is associated with waves that travel out from the atom and later return to it. Closely-related interference patterns are found in measurements of the conductance of a microscopic junction (or “designer atom”). In this latter cas
34#
發(fā)表于 2025-3-27 10:23:29 | 只看該作者
35#
發(fā)表于 2025-3-27 16:59:41 | 只看該作者
36#
發(fā)表于 2025-3-27 21:49:43 | 只看該作者
Periodic orbit spectra of simple atoms,ansion of quantum spectra. The semiclassical expression for the spectral density (Gutzwiller’s trace formula) can be viewed as a Fourier expansion in terms of classical (quasi) periodic orbits. Inverse Fourier transform of the full quantum spectral density therefore not only gives the PO spectrum in
37#
發(fā)表于 2025-3-27 21:55:20 | 只看該作者
https://doi.org/10.1007/978-3-540-88353-1zwiller-Voros semiclassical zeta function preferable in practice to the quasiclassical zeta function presented here. The cumulant expansion of the exact quantum mechanical scattering kernel and the cycle expansion of the corresponding semiclassical zeta function part ways at a threshold given by the
38#
發(fā)表于 2025-3-28 02:11:31 | 只看該作者
39#
發(fā)表于 2025-3-28 09:33:54 | 只看該作者
Quantum fluids and classical determinants,zwiller-Voros semiclassical zeta function preferable in practice to the quasiclassical zeta function presented here. The cumulant expansion of the exact quantum mechanical scattering kernel and the cycle expansion of the corresponding semiclassical zeta function part ways at a threshold given by the
40#
發(fā)表于 2025-3-28 12:03:31 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 18:43
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
吴忠市| 同德县| 彩票| 贵德县| 长岭县| 板桥市| 青田县| 石景山区| 朝阳区| 治多县| 德安县| 庐江县| 东宁县| 扎兰屯市| 朔州市| 宝兴县| 民丰县| 漠河县| 苗栗县| 河津市| 濮阳县| 溆浦县| 定兴县| 肇庆市| 乌兰浩特市| 巨鹿县| 寻乌县| 明溪县| 化州市| 津南区| 会同县| 平遥县| 兴隆县| 屯门区| 左云县| 泾源县| 广南县| 阿合奇县| 洛扎县| 顺昌县| 砚山县|